
Genetic Algorithms for
Automated Test Assembly

Angela J. Verschoor

Samenstelling promotiecommissie:

Voorzitter/secretaris prof. dr. H.W.A.M. Coonen

Promotor prof. dr. W.J. van der Linden

Referent prof. dr. P.F. Sanders
(Cito, Arnhem)

Leden prof. dr. M.P.F. Berger
(Universiteit Maastricht)

prof. dr. C.A.W. Glas
prof. dr. H. Holling
(Westfälische Wilhelms-Universität, Münster)

dr. W.R. van Joolingen

ISBN: 9789058340979
Cover: Sunrise at Yavapai Point, design by Marieke Bonsma
c° Angela J. Verschoor,
Stichting Cito Instituut voor Toetsontwikkeling Arnhem (2007)

GENETIC ALGORITHMS FOR
AUTOMATED TEST ASSEMBLY

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. W.H.M. Zijm,

volgens het besluit van het College van Promoties
in het openbaar te verdedigen

op donderdag 26 april 2007 om 15.00 uur

door

Angela Jose Verschoor
geboren op 15 februari 1961

te Assen

Dit proefschrift is goedgekeurd door de promotor
prof. dr. W.J. van der Linden.

Acknowledgement

There are some similarities between the development of a test and the
production of this thesis: Various phases can be distinguished in which
many people played a vital role with their contributions.
First, there are the numerous members in the scientific community with-

out whose research this thesis would not have been materialised at all. My
employer, Cito, provided the opportunity to develop test assembly soft-
ware and to facilitate a research project for increasing the versatility of the
software.
Then there are my colleagues, both within as well as outside of Cito.

Existing models and algorithms appeared sometimes to be inapplicable
to their problems, and part of their questions are answered in this thesis.
Without the colleagues of the POK department acting as a sounding board,
it was not always easy to make the distinction between the good and not-
so-good ideas for solving the new problems at hand. Regularly they found
their computers still working on the simulations when they arrived Monday
mornings.
My promotor, Wim van der Linden, not only provided me with helpful

comments on my writing, but also inspired me to continue and finish the
project. Instrumental in this continuation and finishing were also the stu-
dents from Fontys, Tilburg, who assisted me with their research projects.
I would like to thank everyone involved for playing their indispensable

role in the realisation of this thesis. But above all, I am obliged to Sabine
for her never lasting support and patience.

Angela Verschoor

vi

Contents

1 Introduction 1
1.1 Classical Test Theory . 4
1.2 Item Response Theory . 6
1.3 Test Assembly . 7
1.4 Genetic Algorithms . 9

1.4.1 An Evolution Model 9
1.4.2 Optimisation . 15
1.4.3 Stopping Criteria . 18

1.5 Overview . 19

2 IRT Test Assembly Using Genetic Algorithms 21
2.1 Introduction . 21
2.2 Models for Test Assembly 22

2.2.1 IMIN Model . 22
2.2.2 IMAX Model . 23

2.3 Genetic Algorithms . 24
2.3.1 Fitness . 25

2.4 Simulation Studies . 27
2.4.1 First-Phase Simulations 28
2.4.2 Second-Phase Simulations 35
2.4.3 Third-Phase Simulations 37

2.5 IMIN Model . 40
2.5.1 Epistasis and the IMIN Model 40
2.5.2 Simulations . 41

viii Contents

2.6 Conclusion . 42

3 An Approximation of Cronbach’s and its Use in Test
Assembly 45
3.1 Introduction . 45
3.2 CMAX Model . 46
3.3 Genetic Algorithms . 50

3.3.1 Simulations . 52
3.4 Comparison of CMAX and Model II 55
3.5 CMIN Model . 56

3.5.1 Simulations . 58
3.6 Conclusions . 59

4 Automated Assembly of Testsets: Fit in all Seasons 61
4.1 Introduction . 61
4.2 Test Assembly in Item Response Theory 61
4.3 Compact Coding . 66
4.4 Epistasis . 67
4.5 Simulations . 69

4.5.1 A Testset with Overlap 73
4.6 Conclusions . 74

5 Preventing the Bankruptcy of an Item Bank 77
5.1 Introduction . 77

5.1.1 The Russian Unified State Examinations 78
5.1.2 Dutch as a Second Language Examinations 79

5.2 The Dynamics of Item Bank Management 79
5.3 Item Bank Depletion . 80
5.4 Item Bank Management Strategies 86
5.5 Simulations . 87
5.6 Discussion . 91

6 Epilogue 93

Samenvatting (Summary in Dutch) 97

A Interitem Relations 101

B Penalty Functions 103

References 105

1
Introduction

Although some students may disagree, the primary goal of testing is some-
thing entirely di erent than merely pestering them. A test is a tool to
measure their abilities. As with any other measurement instrument, its
user wants the measurement to be comparable to other measurements.
This observation, which was made for the first time probably thousands

of years ago, led to the development of standardised tests. A test is con-
sidered to be standardised when the test procedures are fixed in such a
way that di erences among testing conditions, times, and places, do not
influence the scores. Every testee will be given “the same test”. As this
statement does not necessarily imply that every testee faces the same set
of questions, accuracy of the measurement, or test reliability, is an im-
portant issue. Also, in order to establish fairness of testing and decision
making based upon the scores, it is reasonable to require that the test
actually measures the concept as intended, that it is valid.
In order to fulfill the validity and reliability conditions, test develop-

ment requires a systematic approach, in which assembly procedures play
an important role. As argued by Downing (2006), several phases in such
an approach can be distinguished:

1. Project plan. All a priori decisions need to be made explicit, such as
the purpose of the test and the construct hypothesized to be mea-
sured. This will provide a framework for the e cient execution of the
subsequent phases.

2. Content definition. The first question to be answered is what con-
tent domain is to be tested. Validity of inferences for test scores rely

2 1. Introduction

heavily on the operationalisation of the domain, and hence decisions
regarding the content definition need to be taken explicitly.

3. Test specifications. Test specifications refers to the complete set of
test characteristics. Sometimes, the terms content specifications and
test specifications are used interchangeably, but in this phase more
elements in the test characteristics should be considered: At a min-
imum, the test specifications should also include test format, test
length, target di culty / test information, the item formats to be
used and the medium in which the test will be published.

4. Item development. Only after the first three phases are performed,
items should be developed, or existing items should be evaluated for
their suitability.

5. Item banking. Usually, systematic storage of items, including their
psychometric properties, starts already during the item development
phase. Two purposes are served: facilitating test assembly and storing
items for future reuse.

6. Pretesting. Two types of pretesting can be distinguished, and if one
wants to adhere to a “golden standard” of test development, both
types should be considered. In the first pretest, sometimes also re-
ferred to as pilot test, items are evaluated for ambiguities, inconsis-
tencies and unwanted response behaviour. If the items are approved,
a second pretest is administered with the purpose of gathering psy-
chometric data.

7. Analysis. A hypothesis, usually one that all tested items provide
scores that can be described by a selected psychometric model, is
tested. Depending on the purpose of the test, the analysis might in-
clude classical analysis, item response theory analysis, analysis based
on multidimensionality, and analysis of potential di erential item
functioning. During this phase, item parameters are estimated and
information on them is added to the item bank.

8. Test assembly. Several methods are used nowadays. A common prac-
tice is selection by hand, usually after item analysis either based upon
classical test theory or item response theory. Larger testing programs,
however, have better access to resources like sophisticated item bank-
ing systems, opening the possibility to improve their test assembly
process by means of automated test assembly.

9. Test production. Although now only the lay-out of the items is of-
ficially point of consideration, it is essential in this step that the
assumption that the item parameters are still valid, is not violated.
It is necessary that the testees will react in the same way to the items

1. Introduction 3

as in the pretest, and the best way to guarantee this is not to modify
any of the items at all in this step. Apart from the test itself, also
auxiliary material such as test manuals should be produced.

10. Test administration. The test should be taken under the conditions
described in the test manual. Without adequate control of these con-
ditions, it would be di cult to interpret the test scores meaningfully.

11. Scoring. Scoring, that is, applying a key to the responses, can be
simple or complex, depending on the test format. After the scoring
process, passing scores may be established. For many tests, grade lev-
els are assigned to the scores using cut scores. Methods for setting cut
scores can be categorised in two groups: relative or absolute meth-
ods. Relative methods use the test scores to establish a point in the
score distribution, while absolute methods are based on the expected
performance of a borderline testee.

12. Reporting results. Testees have a right to an accurate, timely, and
meaningful report of their test performance. For some high-stakes
tests, only the pass-fail result is reported, but many testing programs
report total test scores, cut scores, and some relevant subscale scores.
A second type of report is the technical report, serving as a justifica-
tion for the decisions made and making recommendations for future
improvements.

In certain cases, some of the phases are performed iteratively. Sometimes,
repetition of phases is caused by incorrect or incomplete execution of pre-
vious phases. Also, during the analysis, the conclusion might be drawn to
revise or to expand the test specifications, thus providing improved guid-
ance to the test assembly process.
Automated test assembly has great advantages over manual test assem-

bly. First, knowing that automated methods will be employed forces a rig-
orous definition of test specifications early on, reducing the need to repeat
some phases of the test development process. But also, more importantly,
the number of possible combinations of items is too large to guarantee opti-
mal or near-optimal solutions by hand. Thus, operational costs are reduced
while improving quality control. Especially item response theory provides a
good framework for automated test assembly methods. On the other hand,
concepts from classical test theory have proven to be more accessible for
everyone involved without an expert background. The framework of clas-
sical test theory, however, is less flexible than the item response theory
framework.
This thesis discusses test assembly models using a new category of op-

timisation methods that has recently become popular in other fields, es-
pecially for its capability to e ciently solve a wide variety of problems:
genetic algorithms. With minimal assumptions regarding the optimum or

4 1. Introduction

the search space, genetic algorithms mimic evolutionary processes found
in biology. A population of solutions evolves towards the optimum, with
the only requirement that each solution can be evaluated. Therefore, ge-
netic algorithms have been implemented for nonlinear integer programming
problems, among others. The use of these versatile algorithms leaves the
possibility to introduce and solve new classes of automated test assembly
models, like nonlinear optimisation problems based on classical test theory
or models for the design of large-scale testsets. Implementations for solving
existing and new automated test assembly models are investigated in this
thesis.
First, in this chapter several key issues are introduced: classical test the-

ory, item response theory, automated test assembly, and genetic algorithms.

1.1 Classical Test Theory

Spearman (1904) introduced the concept of measurement error in psychol-
ogy. He observed that scores contain a random element, and his attempt
to correct correlations for attenuation due to measurement error marks the
beginning of classical test theory (CTT). In CTT, the relation between the
observed score Xj of examinee j on a given test, the true score j and
measurement error Ej is postulated as

Xj = j +Ej . (1.1)

True score j is defined as the expected observed score of an examinee over
repeated administrations of the test. Furthermore, because of their very
nature, the measurement errors over repeated administrations are uncor-
related, as well as true scores and measurement errors, while the expected
error is zero. The model in equation (1.1) can be extended to a model for a
randomly selected person, formalised axiomatically by Novick (1966). Ob-
served score and measurement error are now random due to two di erent
sources: random sampling of a person, and random sampling from this per-
son’s distribution. If J denotes a randomly selected person, while FXj (·)
denotes the distribution function of the observed score for a fixed examinee
and F (·) the distribution function of the true score for the population,
then the core of CTT is formed by the equations

Xj FXJ(x; j)

J F ().

Essential in CTT is the assumption that persons are selected randomly, an
assumption which unfortunately is violated frequently during data gather-
ing.

1.1 Classical Test Theory 5

The primary entity under consideration in this model is a fixed test, usu-
ally consisting of several items. Two item properties play an important role
in CTT: item di culty and item discrimination. For dichotomously scores
items, the di culty is defined as the expected score given by a randomly
selected examinee from the population of interest and is denoted by i.
Usually, its observation in a random sample from the population is referred
to as the p-value pi. Item discrimination is operationalised as the point-
biserial correlation between item score and test score, for item i denoted
as it.
An important property of a test is its reliability, which is defined as the

squared correlation between true scores and observed scores denoted by
2
X . An approximation of the test reliability is Cronbach’s , the internal
consistency of the test or the degree to which all item scores correlate. It
is a lower bound on test reliability, and hence a popular approximation to
this unobservable quantity. Let k be the test length, 2

X the test variance
and 2

i the item variance. Cronbach’s can be written as

=
k

1 k

Ã
1

Pk
i=1

2
iPk

i=1 i it

!
=

k

1 k

Ã
1

Pk
i=1

2
i

2
X

!
. (1.2)

Two drawbacks of the use of CTT in item banking can be observed: First,
item di culties, item discriminations and test reliability are dependent on
the population. A di erent population would give di erent item and test
characteristics. For example, the expected score of an item i, i is higher
for a more able population while item discrimination and test reliability is
higher for a more heterogenous population. Therefore, random sampling is
essential, while results based on data collected for one population cannot
be extrapolated to other populations.
A second drawback is that, because the test is the main entity in CTT, it

is cumbersome to generalise item parameters collected in the context of one
test to more generally usable item parameters. For example, item discrimi-
nation rit cannot be considered outside the context of the test in which the
item was administered, and hence cannot be regarded as a universal item
discrimination parameter. When an item score is part of the test score,
the value of rit tends to be inflated. The shorter the test, the greater this
inflation. In an attempt to define a more stable item discrimination index,
Zubin (1934) introduced the item-rest correlation rir. The inflation does
not occur in item-rest correlation, but a di erent problem is introduced: If
items are positively correlated with each other, the item-rest correlation of
an item tends to rise while lengthening the test with items similar to the
items currently in the test.

6 1. Introduction

1.2 Item Response Theory

During World War II, the rapidly rising demand for standardised tests led
to a gradual shift in working procedures. Instead of constructing a test as
a single entity, a trend was started to construct items separately with the
prospect of reuse. While CTT lays emphasis on tests as a whole, a new
theory that focused on items and provided invariant item parameters was
needed. Instrumental in the development of these invariant item parameters
was the disentanglement of the item parameters and person parameters, in
e ect separating the items from the context of the population of examinees.
The roots of item response theory (IRT) lie perhaps in Thurstone’s (1925)

assumption of an age related scale underlying the items of the Binet and
Simon (1905) test of the mental development of children. Lazarsfeld (1950)
extended Thurstone’s idea with the assumption of local independence in
latent trait models, accelerating the development of what was later to be
called IRT. Rasch (1960) introduced a model using the logistic function
as a regression function instead of the normal ogive function, thus taking
advantage of the numerical properties of the logistic function. Soon, other
models were formulated along the lines of the Rasch model, for example
the 2- and 3-parameter models by Birnbaum (1968) and the partial credit
model for polytomous items (Masters, 1982).
A central notion in IRT is the assumption that the probability of a correct

response given by an examinee can be expressed as a function of the per-
son’s latent ability. This function is dependent on the item characteristics.
Several models have been developed with various functions. Widely used
models for dichotomous item scores are the one-, two-, and three-parameter
logistic (1PL, 2PL, 3PL) models. Let denote the ability parameter of ex-
aminee j, and let ai, bi and ci denote the item discrimination, the item
di culty and the guessing parameters of item i, respectively. The proba-
bility of correctly answering item i according to the 3PL model (Birnbaum,
1968) can be expressed as

Pi() = P (Xi = 1|) = ci + (1 ci)
exp(ai(bi))

1 + exp(ai(bi))
. (1.3)

where Xi is the score of examinee j to item i. Adding the assumption that
ci = 0 for all items results in the 2PL model (Birnbaum, 1968). Adding a
further assumption that ai = 1 for all items gives the 1PL model, or the
Rasch model.
Measurement error in IRT is expressed in terms of the standard error of

measurement, or its square, the sampling variance of . When maximum
likelihood estimation is used, the reciprocal of Fisher’s information I()
equals the asymptotic sampling variance of the estimator of . For a given
dichotomous item i it can be shown that its Fisher’s information, in IRT
called the item information function and denoted by Ii(), can be written

1.3 Test Assembly 7

as

Ii() =
{Pi()0}2

Pi() (1 Pi())
. (1.4)

Assuming local independence of item responses, the test information func-
tion equals the sum of information functions of the items in the test.
The model considered in the greatest part of this dissertation is the 2PL

model, although other models, for example the 3PL model or several models
for polytomously scored items, can generally be used without any changes
or with only minor adaptations to the optimisation problems that will be
discussed.

1.3 Test Assembly

As a test is a tool to measure the candidates’ abilities, it comes as no sur-
prise that a test with a low error of measurement is favoured over a similar
test with a higher error of measurement. In terms of IRT this would mean
that in order to minimise the sampling variance of , the test information
function must be maximised.
Early attempts using this approach were undertaken by Lawley (1943)

and Lord (1952) for the normal ogive model. They investigated the depen-
dency of the information function on the parameters of the selected items.
Subsequently items were selected in order to assemble a test with a de-
sirable shape of its information function. Birnbaum (1968) introduced the
concept of a target information function and proposed a more systematic
method of item selection. Lacking today’s computational power, selection
was done by hand, making the whole procedure rather laborious. Thus,
although Birnbaum’s approach was theoretically important, is was very
cumbersome to use it. Meanwhile, common practice was to keep using clas-
sical indices for test assembly, a practice that Embretson (2004) observed
to be still widely spread by the start of the twenty-first century.
In the mean time, Gulliksen (1950) and Ebel (1967) showed that the

most profitable strategy to maximise Cronbach’s was to select items
with item-test correlation as high as possible, usually items with p-value
close to 0.5.
Theunissen (1985) abandoned the idea of optimising the test information

function as a continuous function, and concentrated on a series of distinct
ability points. His idea was to assemble a test whose TIF exceeds a target
function, specified on a limited number of discrete points. Usually, but not
necessarily, these points show some relation with concepts like the cut-o
points, and can be selected in such a way that the TIF will exceed the
interpolation of the target function at intermediate points. The objective
of Theunissen’s model is assembling such a test with minimal e ort, for
example test length. Let xi be the decision variable associated with item i,

8 1. Introduction

indicating whether it is selected (xi = 1) or not (xi = 0), and denote the
target function, evaluated in ability point k, by Tk. In its simplest form,
Theunissen’s model is formulated as

minimise
X
i

xi (1.5)

subject to:
X
i

Ii(k)xi Tk k

xi {0, 1} i.

Theunissen’s model is especially suitable for high-stakes testing, where
important decisions have to be made based on the test scores. Given the
acceptance of a certain maximum measurement error, the purpose of the
model is to assemble a test against minimal e ort.
Theunissen’s approach opened the possibility to employ mathematical

programming methods in test assembly and his model was soon followed
by others. Van der Linden and Boekkooi-Timminga (1989) maximised the
TIF evaluated in a number of points, given a shape as specified in a target
for the TIF, and subject to a maximum test length as well as content specifi-
cations. Their approach concurs with the traditional methods of test assem-
bly: While it is relatively easy to specify a required test length, the fact that
the test information function is an abstract concept makes its specification
rather di cult. Boekkooi-Timminga (1990) extended this model to paral-
lel test assembly, in which no overlap between the tests was allowed. The
weighted deviation model by Swanson and Stocking (1993) concentrates
on heavily constrained situations that might have no feasible solutions. As
calculation times might sometimes be unacceptable, Armstrong, Jones, Li
and Wu (1996) developed a network flow model that could be employed in
special cases.
Test assembly using CTT has shown a similar development. Adema and

van der Linden (1989) formulated an optimisation problem based on a
linearisation of Cronbach’s . Reverting to Gulliksen’s ideas, Armstrong,
Jones and Wu (1992) developed an algorithm to assemble a test parallel to
a seed test, while Sanders and Verschoor (1998) published two algorithms
for the assembly of weakly and strongly parallel tests.
Various software packages are available today to apply these methods

in practical situations like OTD (cf. Verschoor, 1991) and ConTEST (cf.
Timminga, van der Linden and Schweizer, 1996). All solution methods that
are currently developed can be divided in two categories: exact methods and
heuristics. An example of an exact method is branch-and-bound proposed
by Land and Doig (1960), which is frequently implemented in commercially
available LP-solvers. There are several types of heuristic algorithms. Greedy
algorithms form a common class of heuristics. A greedy algorithm always

1.4 Genetic Algorithms 9

selects the item that adds most to the test, and will never remove an item
once it is selected.
A di erent type of heuristics that are frequently used are local search

algorithms. In local search algorithms, existing solutions are iteratively
improved by making small modifications. Local search algorithms are gen-
erally slower than greedy algorithms, but usually they provide better so-
lutions. Therefore, local search algorithms are often preferred over greedy
algorithms if computational power is not an issue. Genetic algorithms are
members of the class of local search algorithms.

1.4 Genetic Algorithms

Genetic algorithms (GAs) form a family of general purpose search al-
gorithms that are successfully employed to solve optimisation problems,
among many others. First studied by Holland (1968, 1973, 1975), they are
iterative methods inspired by an analogy with evolution theory in biology
as presented by Darwin (1859). The goals of Holland’s research have been
twofold: modelling the adaptive processes of natural systems, and design-
ing artificial systems that retain the important properties of these natural
systems.
A population of solutions, in terms of test assembly these are candidate

tests, procreate and struggle for survival. As better tests are assumed to
have higher probabilities to procreate and survive, the population evolves
towards better tests over the iterations. Genetic algorithms are theoretically
and empirically proven to be powerful in their search for improvement in
complex systems. Furthermore, they are not limited by restrictive assump-
tions about the search space, like continuity, the existence of derivatives,
or linearity, the most important assumption being that the quality of the
solutions, or candidate tests, can be evaluated.

1.4.1 An Evolution Model

Consider a group of N individuals which form a society that is subject to
an evolutionary process. Note that these individuals need not be human
beings, they could be anything, living or artificial. Time, an essential ele-
ment for evolution, is represented by iterations in which a new generation
partly replaces the old generation. Every individual has a chance to mate
with another and procreate in each iteration, and has a chance to survive
to the next iteration. Procreation is regarded to be a genetic process in
which two mating parents create o spring bearing properties of both of
them. A “survival of the fittest” process determines which individual will
die and which individual will survive. Thus, each iteration consists of three

10 1. Introduction

steps in which a new generation is formed: mate selection, procreation and
survival (cf. Goldberg, 1989).
It is clear that evolution is modelled as a complex process. Eiben and

Smith (2003) discuss this process in terms of the five elements it contains:
representation, fitness, mate selection, procreation, and survival.

Representation

Each individual is represented by a string, called a chromosome. The set
of values that the individual string positions, the genes, can take is called
the alphabet. A coding and decoding scheme provides a mapping between
the physical individual and its chromosome. This chromosome contains
all genetic material needed to procreate, and is instrumental in the mate
selection and survival process. An example of a representation scheme is
based on a binary alphabet, containing the values 0 and 1, while binary
variables in the physical individuals are mapped directly onto the genes.

Fitness

Usually, but not necessarily, the processes modelling mating and survival
are stochastic processes controlled by the fitness of the individuals: Ones
with a high fitness have a higher chance to mate and survive than indi-
viduals with a low fitness. The fitness is modelled as a fitness function,
and provides a search direction for the evolution process. The mechanics of
this process have been clarified in Holland’s schema theorem, of which an
outline is presented in the next paragraphs.

Mate selection

In the first step of an iteration, the mate selection, individuals are selected
as parents in order to create new individuals called o spring. With a pop-
ulation of N chromosomes, N/2 pairs of parents are selected for mating.
The selection chance is defined to be a function of the fitness of the indi-
vidual involved. This selection process should meet two assumptions: (1)
an individual with a high fitness should have a higher chance to be selected
than an individual with a low fitness and (2) an individual cannot mate
with itself. It is not required that an individual can mate only once. Some
individuals may mate multiple times, while others might not mate at all.
In the standard GA as described by Holland, the probability to be selected
is proportional to the individual’s fitness. Here, N/2 times, two individuals
are drawn without replacement, with probability P (S) for an individual S
in population G:

P (S) = f(S)P
S G

f(S)

where f(·) is the fitness function.

1.4 Genetic Algorithms 11

Procreation

After mate selection, the two mates, also called parents, procreate. Procre-
ation is a process in which two parents create two children, called o spring.
The parents pass on information about their genetic makeup to their o -
spring through the crossover operator, while the mutation operator intro-
duces new genetic properties into the population. The two newly created
children are initially identical to the parents, and are subsequently subject
to crossover and mutation.

Crossover

The primary purpose of the crossover can be described as the exchange of
information encoded in the chromosomes of the parents, while the mutation
serves to introduce new information. An often-used crossover operator is
one-point crossover, in which a position k is chosen uniformly at random
between 1 and chromosome length less one, L 1. This position k is referred

FIGURE 1.1. The One-Point Crossover

to as the crossover site. The chromosomes are cut at the crossover site, and
the genes k + 1 to L are swapped and reconnected, as shown in Figure
1.1. Other types of crossover can be defined as well, like the multiple-point
crossover. Here, several crossover sites are chosen, and parts are swapped
alternatingly.
A special type of crossover is uniform crossover, proposed by Syswerda

(1989). Here, every gene is swapped between the two children with chance
0.5. Uniform crossover has advantages over one-point crossover in many
applications. In mappings where neighbouring genes have no structural re-
lation with each other, unexplored regions in the search space might be
reached faster using uniform crossover, while still maintaining the neces-
sary diversity in the population. In other mappings, several neighbouring
genes might have a meaningful relation with each other, for example, they
might represent one single property. Uniform crossover might disrupt these
properties to the extent that exchange of information does not take place

12 1. Introduction

in a systematic way, resulting in the evolution of the population to become
erratic.

Mutation

While crossover provides the exchange of information, mutation introduces
new information into the population. Mutation is an operator on gene level:
Each gene has a probability pμ to assume a di erent value in the alphabet.
In case the alphabet contains only the values 0 and 1, mutation e ectively
flips the value of every gene with probability pμ. Fogarty (1989) has shown
that GAs are expected to perform best if pμ = 1/L.

Survival

In the last step, the population is reduced to its original size in order to
form the initial population for the next iteration. This reduction process
is usually a stochastic process controlled by the fitness function. Similar
to mate selection, the chance of survival is a function of the individual’s
fitness with the assumption that an individual with a high fitness has a
larger chance of survival than an individual with a low fitness. Exception
to this assumption is generational survival, in which all o spring survives,
and all individuals from the initial population will die.
Survival schemes can be classified according to two properties: whether

they allow duplicate individuals to survive or not, and whether the best
individual is guaranteed to survive or not.
If two identical individuals mate, crossover will be ine ective as both

children are identical to each other as well. Only mutation will be able to
modify any o spring. This is also the reason for the requirement that an
individual should not be allowed to mate with itself. Allowing duplicates
to survive might accelerate the search process, it might also cause the
search to stop suddenly if all individuals in the population are identical.
This situation is defined as premature convergence. Retaining a necessary
level of diversity in the population is deemed necessary in order to prevent
premature convergence.
Elitism is defined as the principle that the individual with the highest

fitness is guaranteed to survive to the next iteration. As De Jong (1975)
has pointed out, “elitism improves local search at the expense of global
perspective”: The search might be more e cient with an elitist survival
mechanism but the risk of premature convergence is higher.
Two survival mechanisms are frequently used. In both mechanisms, du-

plicates are removed first. After that, in the first mechanism, a determinis-
tic one, the N best individuals survive while in the second mechanism the
probability of survival is proportional to the fitness.

1.4 Genetic Algorithms 13

Scaling

It is obvious that the relation S : f(S) 0 must hold in order to define
all mate selection probabilities in the SGA properly. If this is not the case,
either the fitness function or the relation between probabilities and fitness
must be redefined. These relations between the probabilities and the fitness
are usually referred to as scaling mechanisms. There are several scaling
mechanisms, the most important being linear scaling and rank based scaling
(Baker, 1985). In linear scaling, a linear transformation P (S) = a f(S)+b is
applied. Coe cients a and b are chosen in such a way that the probabilities
for all individuals in the population are properly defined. Note that this
does not imply that coe cients a and b are fixed during all iterations. As the
range of fitness values in the population may vary widely during iterations,
a and bmay assume di erent values at each iteration. In rank based scaling,
all individuals are sorted according to their fitness. Mate selection and
survival chances P (S) are now functions of the individual’s rank within
the sort order. Baker suggests to assign a user defined value MIN to the
individual with the lowest fitness, MIN + 1 to the individual with the
second lowest fitness, etc., and to define the probabilities proportional to
these assigned values.

The simple genetic algorithm

One version of the genetic algorithm often used in performance analyses
is called the simple genetic algorithm (SGA). Because of its simplicity, the
schema theorem can easily be proven to hold for the SGA. Furthermore, the
SGA can be modelled as a Markov chain, which forms the basis of more
recent research on convergence. The processes implemented in the SGA
are the following: a binary alphabet, mate selection chance proportional to
the fitness, one-point crossover, and generational survival. Unfortunately,
the SGA is rather ine cient for many optimisation problems and therefore
hardly used in practical situations.

The schema theorem

The notion that the procedure of procreation and survival leads to improve-
ment is given by Holland’s schema theorem (1973, 1975). The idea behind
the schema theorem is that individuals representing better solutions have
certain properties in common, and that these properties are expressed in
similarities between chromosomes at certain genes. The concept of a schema
is an e cient way to describe similarities between individuals at certain
genes. In the following outline of theorem, the SGA is assumed.
The alphabet is complemented with the “don’t-care” symbol *, to be

used to indicate indi erence in gene value. Thus, 3 symbols are used: 0, 1
and *, and the schema 1*0 can mean both 100 as well as 110. It is obvious
that not all schemata express the same level of similarity. For example,

14 1. Introduction

the schema 011*1** is a more specific statement about similarity than
1**. The order o() of schema is defined as the number of fixed
positions, or positions that have either value 0 or 1, of , and the defining
length () as the distance between the first and last fixed position. So the
order of 1**0 is 2 and the defining length is 3. It is clear all individuals can
be referred to by 3L schemata. Each individual itself is representative of 2L

schemata. For example, 110 is representative of, amongst others, *1*, 1*0,
and 11*. Thus, the whole population in a particular iteration represents at
most N2L schemata.
Suppose that there are m representatives of schema in population Gt

at iteration t. This is written as mt(). Let ft() be the average fitness
of all representatives of and let f t be the average fitness of the whole
population Gt.
Theorem 1 The representation of schema is expected to change accord-
ing to the following equation:

E(mt+1()) {mt()ft()/f t}{1 ()/(L 1) o()pμ}
Assuming a GA without crossover or mutation, thus with a reproduction

scheme in which o spring is identical to the parents, can be expected to
gain representatives in the next generation if ft() > f t. Mate selection
depends on fitness, and in the SGA it can be expected that mt()ft()/f t
representatives of will mate and thus will be in generation Gt+1.
Selection on its own, however, creates no new material. This is done by

crossover and mutation. Crossover disrupts schemata with varying proba-
bilities, depending on their defining lengths. The smaller the defining length
of a schema, the smaller the chance that the randomly selected crossover
site falls within it and thus disrupts the schema. The probability that a
schema will contain the crossover site is ()/(L 1). Therefore, the upper
bound on the probability of losing a representative is ()/(L 1). Note
that the chance that both parents are representatives of is not taken into
account here and that will not be disrupted in such a case even if the
crossover site falls with . Therefore, 1 ()/(L 1) is an upper bound
on the probability of schema surviving crossover.
Furthermore, every gene has a mutation chance of pμ, or a chance of

surviving the mutation of 1 pμ. Therefore, survives mutation with
probability (1 pμ)

o(). For small pμ this is approximated by 1 o()pμ.
Summarising, the representation of will change according to the following
expression:

E(mt+1()) {mt()ft()/f t}{1 ()/(L 1) o()pμ}.
The conclusion is that short, low-order schemata with above average fitness
receive increasing representation in subsequent iterations. These short and
low-order schemata are usually called building blocks and form the basis of

1.4 Genetic Algorithms 15

the search direction towards the optimum. It is worth bearing in mind that
the schema theorem only considers the disruptive e ects of crossover and
mutation. Analysis of the constructive e ects in creating representatives
of schemata is harder since these e ects largely depends on the constitu-
tion of the population. Bridges and Goldberg (1987), however, formulated
a variant of the schema theorem that takes into account that crossover also
can create representatives of schemata. Furthermore, under simplifying as-
sumptions, Spears and De Jong (1999) showed that the expected number
of representations of a schema that are destroyed is equal to the expected
number of representatives that are created.
One can typically observe the following behaviour in representation of

schema . If at first the representation is very small with only individu-
als with high fitness, the representation can be expected to grow rapidly
as representatives with high fitness have a greater chance to replace non-
representatives with lower fitness than vice versa. But at the same time this
causes the average fitness f t to rise, and thus the growth rate to decrease
until ft() = f t. From that moment on, the representatives are expected
to be gradually replaced by individuals that represent competing schemata
with higher average fitness. The representation declines again as the pop-
ulation evolves into a region with higher fitnesses, and in some cases the
schema might even become extinct in the population.
Summarising, the schema theorem shows that the average fitness of the

population can be expected to rise over the iterations. The population then
evolves towards regions in the search space with high fitness values. There-
fore, genetic algorithms can be used as optimisation algorithms without the
need for assumptions about certain properties of optima, such as derivatives
being zero or unimodality.

1.4.2 Optimisation

The e ciency of genetic algorithms, however, depends largely on their im-
plementation. They are processes that must be carefully balanced in order
to arrive at the actual optimum. Two common threats exist: premature
convergence, or getting stuck at a local optimum, and epistasis. Epistasis,
as defined by Davidor (1991), is a condition in which some of the genes do
not have any direct influence on the fitness. In that case, many chromo-
somes tend to have the same fitness. All these individuals have equal chance
to procreate and survive, and if this is the case for the whole population, it
is clear that for all schemata represented in it ft() = f t. As there are no
individuals with higher or with lower fitness, representatives of a schema
with above-average fitness do not replace representatives of schemata with
below-average fitness, except if mutation creates an individual with a dif-
ferent fitness. Apparently, the search direction towards the optimum has
been lost.

16 1. Introduction

Three elements of optimisation

Optimisation problems, such as ATA models, contain three elements: de-
cision variables, objective function and restrictions. The decision variables
in ATA models indicate whether items are selected in the test or not and
are the core of the model. The decision variables are mapped onto the
genes of the chromosomes, while candidate tests — combinations of items —
are the individuals in the genetic population represented by these chromo-
somes. The mapping is straightforward: Assuming a binary alphabet, every
variable takes its own place in the chromosome string.
The fitness function and objective function are closely related: During the

GA the fitness function is maximised. The assumption that the maximum
of the fitness function coincides with the optimum of the problem, deter-
mined by the objective function and restrictions, must be made. In case of
unrestricted maximisation problems, it usually su ces that the objective
function and fitness function are the same. For minimisation problems, a
simple transformation can be devised in such a way that the minimum of
the objective function coincides with the maximum of the fitness function.
Only two weak assumptions regarding the fitness function, and hence re-
garding the objective function, are needed: (1) the fitness function can be
evaluated for all individuals that can be generated through the crossover
and mutation operators, and (2) a scaling scheme can be devised to define
the probabilities for mate selection and survival properly. Linearity, for ex-
ample, is not required, and the absence of such assumptions reveals the
true strength of GAs as optimisation algorithms.
Few problems, however, are unrestricted. In most problems, restrictions

divide the entire search space into two regions: the feasible space and in-
feasible space. Ultimately, individuals from the infeasible space must be
rejected. GAs should be designed in such a way that either infeasible in-
dividuals are not created at all or that they are rejected sooner or later.
There are a few options to design such algorithms:

• Rejection of infeasible individuals. This approach is simple, and works
reasonably well in cases where the feasible search space is convex and
constitutes a large part of the whole search space, that is, in problems
with just a few restrictions. In more complex problems, too many
individuals might be generated that appear to be infeasible, and in
such a case only an occasional individual will be accepted.

• Use of special mappings and operators to guarantee feasible solutions.
For some problems, it could be a complicated task to design a spe-
cial representation such that every chromosome maps onto a feasible
solution and vice versa. It would involve a tailor-made implementa-
tion whereby each individual restriction has to be taken into account
and frequently special crossover and mutation operators would be
needed as well. Achterkamp (1993) took this approach in test as-

1.4 Genetic Algorithms 17

sembly. She noticed that in the standard mapping, fixed test length
restrictions are frequently violated by crossover and mutation. In or-
der to overcome this phenomenon she devised a genetic algorithm
in which crossover and mutation only produced tests of the required
length. Thus, fixed length restrictions were made redundant. She de-
fined a mapping in which the genes were mapped directly onto the
items in the test: the first gene indicating the first item in the test,
etc. This representation does not use a binary alphabet but one that
contains all item numbers in the pool. This approach works very well
for simple test assembly models but additional restrictions are com-
plicated to incorporate.

• Use of a repair algorithm as presented by Orvosh and Davis (1993).
This algorithm constructs a feasible solution given any individual.
But it has the drawback of sometimes repairing many individuals
into the same feasible solution. Thus, since di erent chromosomes are
mapped onto the same solution, these are given equal fitness function
value, resulting in epistasis.

• Use of a penalty function for infeasible solutions. Allow any o spring
to be generated, but use a fitness function based on a relaxation of the
optimisation model. For objective function c(x) and penalty function
g(x), fitness function f(x) can be defined as f(x) = c(x) g(x). The
major question is how the penalty function should be designed. If the
penalty is too low, the optimum and maximum of the fitness function
do not coincide, and the maximum of the fitness function is located
in the infeasible space. Intuitively, the penalty should be kept as low
as possible, just above the limit at which the optimum of the model
and the optimum of the fitness coincide. Too high a penalty might
cause premature convergence, as valuable information contained in
the genes of the infeasible solutions gets extinct too quickly.

In order for the evolution process to evolve towards the feasible space,
a necessary condition can be given. For all infeasible solutions having
directly neighbouring feasible solutions, there must be at least one
such neighbour with a higher fitness. Should this not be the case the
process might evolve further away from the feasible region. The penal-
ties, however, should not be chosen too high. If infeasible solutions
are eliminated too quickly, diversity in genetic information might be
lost, resulting in premature convergence. Le Riche et al. (1995) con-
firm the e ectiveness of this so-called minimal penalty rule. The use
of penalty functions attracts another problem: Find a penalty func-
tion that is robust under a wide variety of optimisation problems
as they occur in practical situations. This is why it is di cult to
implement this rule. A hypothesis formulated by Richardson et al.
(1989) may provide some help: “Penalties which are functions of the

18 1. Introduction

distance from feasibility are better performers than those which are
merely functions of the number of violated constraints.”

For violated restriction
P
i aixi b, the penalty function can be de-

fined as g(x) = (
P
i aixi b), that is, directly proportional to the

distance to the feasible space. Coe cient is called the penalty multi-
plier. In many practical cases, a simulation study must be used to de-
termine appropriate values for the penalty multipliers. Furthermore,
Siedlecki and Sklanski (1989) show that “the genetic algorithm with
a variable penalty coe cient outperforms the fixed penalty factor al-
gorithm.” Such a genetic algorithm has a penalty updating scheme
with the following outline: Consider consecutive iterations, each
with their best individual. Thus, individuals are considered, which
are possibly identical. If all these best individuals appear to be infea-
sible, raise the penalty multiplier by multiplying it by 1+ : It seems
to be plausible that the optimum for the fitness function is located in
the infeasible region, which is a sign that the penalties are too low. If
all these solutions are feasible, lower the multiplier by multiplying
it by 1 , since the penalty might be too high to avoid the risk
of premature convergence. In other cases, that is, if some individu-
als are feasible and others are infeasible, leave the penalty multiplier
unchanged.

1.4.3 Stopping Criteria

One element of GAs as optimisation methods has not been considered yet:
we may assume that the population evolves towards the optimum, but does
it actually reach it? This question was answered by Goldberg and Segrest
(1987), and Eiben, Aarts and van Hee (1991) using Markov chain analysis.
Their approach was to consider the SGA as a Markov chain. They analysed
steady states, and the conditions under which these contained an optimal
solution. Thierens and Goldberg (1994) showed that the convergence in
the SA can be estimated for su ciently large populations. The chance
that the population contains the optimal solution is asymptotically given
by Popt(t) = 1

©
1 (1 0.5e t/L)L

ªN
. Suzuki (1993) derived a lower

bound of the probability of the fittest individual being included in the
steady state solutions. From this lower bound, an upper bound on the
number of iterations required to find the optimal solution with certainty
can be calculated. Aytug and Koehler (1996) showed that this upper bound
is log(1)/ log(1 pμ

LN). Although these analyses are theoretically very
important, they provide us with no practical stopping rule as they cannot be
generalised to most of the GAs that are implemented for practical problems.
Alternatively, the GA can be stopped when it can be shown that the

best individual is within a small bandwidth from the optimum. A detec-
tion mechanism, for example, one comparable to Lagrangian relaxation, is

1.5 Overview 19

absent. Therefore, other criteria must be used. The simplest rule is to stop
after a fixed number of iterations in the hope that a solution within the
required bandwidth has been found.
The schema theorem, however, provides some insight in the average be-

haviour of a GA. It states that as time passes, building blocks with above
average fitness will increase in representation. It does not tell us anything
about the individual building blocks in the next generation. The GAs’
heuristic nature suggests that it might not be safe to use stopping rules
like “stop when no significant improvement has been found in n iterations”,
since the process may be temporarily stuck in a local maximum. Therefore,
early research concentrated on criteria based on the extent of convergence
within the population. Recognising convergence on the level of individual
genes is rather straightforward. By its very definition, convergence mani-
fests itself in a large number of converged genes. Convergence of a gene is
therefore be defined as the largest percentage of the population having the
same value. Bias is defined as the average convergence across genes. This
definition thus introduces a measure of the overall extent of convergence. A
rule can be devised to stop when the bias has reached a value high enough
to assume that the optimum has been found.
A third stopping rule can be devised by comparing the online perfor-

mance with the o ine performance. Online performance is defined as the
average fitness of all individuals in a generation, and o ine performance as
the average fitness of a small number of the best individuals. If the quotient
is close to 1, convergence may be assumed.

1.5 Overview

The focus in this thesis is on the implementation of genetic algorithms
for automated test assembly. Traditional models are based either on lin-
ear programming methods, or on heuristics. Both approaches have their
limitations.
As a rule, heuristics provide a “good” solution very quickly but are ded-

icated to specific models. Adapting heuristics to slightly di erent models
can be very di cult or sometimes downright impossible. Fortunately, the
improved access to computer power in recent years has diminished the need
for this kind of methods.
Therefore, automated test assembly models based on linear programming

methods are widely used nowadays. But these models have limitations as
well: In some practical situations, nonlinear models are required that are
impossible to solve by standard linear programming techniques. An exam-
ple of such a situation is the development of parallel test forms in which a
limited overlap is allowed. Although these models can be formulated in a
linear way, this alternative formulation would introduce so many dummy

20 1. Introduction

variables and restrictions that sometimes no optimum will be found within
reasonable time. Models based on methods like genetic algorithms may be
able to provide a solution.
In Chapter 2, a GA for a basic ATA model is presented. This model

can be solved e ciently by LP methods, which thus provides a possibility
for evaluating the e ciency of genetic algorithms. As the proposed GA
is a heuristic as well, an implementation must be designed that solves the
models involved best. A simulation study was performed to find the variant
that solves ATA models most e ciently.
In Chapter 3, a test assembly model based on classical test theory is

proposed. A key issue in CTT is Cronbach’s , a nonlinear entity. Adema
and van der Linden (1989) proposed an e cient linearised model, and this
model is compared to a model optimising in a more direct way using an
approximation of . Using this approximation, a new model can be defined
to assemble a test that exceeds a target against minimal e ort.
The subject of Chapter 4 is the assembly of testsets: a group of related

test forms that may have di erent test specifications, and a restricted over-
lap. The basic genetic algorithm introduced in Chapter 2 has a serious
drawback: Parallel test assembly is an open invitation for epistasis. An al-
ternative implementation introducing the concept of seasons is proposed,
which diminished the epistatic nature of the algorithm.
Chapter 5 explores the limits of automated test assembly. Especially

in large scale on-going testing programs, an even use of items is crucial.
When not restricted, ATAmodels select the best items, while security issues
prevent reuse of these items in the short term. The quality of the produced
tests will decrease, as was shown for two large scale testing programs: the
State Examinations for Dutch as a Second Language in the Netherlands,
and the Unified State Examinations in the Russian Federation. Several
strategies to harness the test assembly were evaluated on their ability to
prevent depletion of the item banks.

2
IRT Test Assembly Using Genetic
Algorithms

2.1 Introduction

Test assembly has been an important issue in the field of educational test-
ing for many years. Birnbaum (1968) introduced the concept of a target
test information function, and proposed to select items in such a way that
the target is approximated as closely as possible. His idea caused a gradual
shift from using classical test theory towards using item response theory
for test assembly. Because of lack of computational power, item selection
was initially done by hand, which made Birnbaum’s approach theoreti-
cally attractive but not very useful in practice. Feuerman and Weiss (1973)
were the first ones to use mathematical programming methods in a psy-
chometric context. However, it took even then more than a decade before
Theunissen (1985) brought Birnbaum’s ideas into practice. Computerised
test assembly methods using item selection from an item bank have since
then become increasingly popular. Van der Linden (2005) gives a compre-
hensive overview of the optimisation models that have been developed and
the di erent techniques to solve these models.
All test assembly models have several elements in common: decision vari-

ables, objective function, and restrictions. The decision variables indicate
whether or not items are selected in a test and thus form the core of the
model. The objective function expresses a property of the test that the test
assembler has defined as desirable. Examples of objectives are the number
of items in the test or the test information function. The first objective is
minimised, while the latter is maximised. The restrictions are the condi-

22 2. IRT Test Assembly Using Genetic Algorithms

tions that the test has to comply with. Examples of these restrictions are
the test length, content specification, or interitem relations such as enemy
sets.
This paper discusses a new class of optimisation methods that has be-

come popular in recent years for its capability to e ciently solve nonlinear
integer programming problems: genetic algorithms. Mimicking evolution-
ary processes in biology, solutions mate and compete for survival. Through
these processes, the population evolves towards the optimum. Unlike most
other methods, they assume no information on the structure of the prob-
lem to be solved and are therefore amongst the most versatile optimisation
methods available.
In this paper, two genetic algorithm for two widely used test assembly

models are presented. Solutions found with these genetic algorithms are
compared with solutions obtained from other algorithms.

2.2 Models for Test Assembly

2.2.1 IMIN Model

Theunissen (1985) proposed a test assembly model based on IRT. Given
the purpose of the test, for example, a decision based upon an examination
that has to be made, a measurement precision is required. This precision is
usually formulated as a maximum standard error of measurement at cer-
tain ability levels. Instrumental to this formulation is the test information
function (TIF). The purpose of the model is to assemble a test that exceeds
a target for the TIF at a series of prespecified ability points, against mini-
mal “e ort”. Examples of this e ort are test length, administration time,
or production costs. The function defining this e ort forms the objective
function, that will be minimised. The TIF target, defined at a series of
ability points, forms the basis for the restrictions in the model.
The IMIN model presented here is a slight reformulation of Theunissen’s

model. The IMINmodel expresses the wish of the test assembler to assemble
a test that uses minimal resources as stated in (2.1), given restrictions in
(2.2) that force the TIF to exceed the target, and subject to restrictions in
(2.3) regarding other resources than the one used in the objective function,
to classification restrictions in (2.4), and to restrictions on item level in
(2.5), as proposed by Theunissen (1996):

2.2 Models for Test Assembly 23

minimise
X
i

qi0xi (2.1)

subject to:
X
i

Iikxi Tk k (2.2)X
i

qinxi Qn n (2.3)

C`m
X
i

cimxi Cum m (2.4)

pr (x) = 1 r (2.5)

xi =

½
1, item i in the test
0, else

i.

Variable xi denotes the decision variable indicating whether item i is se-
lected or not. Iik is the item information at ability point k, while Tk is the
target information at this point. Coe cient qin is the resource parameter
of the item indicating how much of resource n is needed if the item is in
the test, cim is a classification parameter having value 1 if item i belongs to
category m and 0 otherwise. Qn, C`m and C

u
m are the resources required for

the test, and number of items representing the classification categories, re-
spectively. Equation (2.5) expresses relations on item level, the interitem re-
lations. Common examples of interitem relations are enemy sets and friend
sets. More general relations can be formulated as well, using Boolean op-
erators , and ¬. According to De Jong and Spears (1989), these can
be transformed into restrictions based on di erential payo functions, de-
noted by pr (x). In Appendix A, an example of the transformation from
interitem relations to restrictions based upon di erential payo functions
is elaborated.
The IMIN model is suitable for situations in which it is important to

restrict the standard error of measurement to a certain maximum, for ex-
ample, in high-stakes testing where important decisions have to be made,
based on the outcome of the test. Given the acceptance of a maximum
measurement error, the purpose of the model is to assemble a test with
minimal use of resources of a specific kind. Thus, the IMIN model expresses
the wish of the test assembler to assemble a “minimum” test with respect
to a resource function, for example test length, subject to a TIF target, re-
strictions limiting other available resources, classification restrictions and
interitem restrictions.

2.2.2 IMAX Model

Van der Linden and Boekkooi-Timminga (1989) described a maximin model
suitable for situations that are more resource-driven. The model reflects the

24 2. IRT Test Assembly Using Genetic Algorithms

wish to assemble the best test, that is, one with minimal error of measure-
ment, given limited resources, such as test length or administration time,
given a target shape of the TIF, and subject to classification restrictions
and interitem relations, similar to the restrictions in the IMIN model. Here,
the objective is defined as the minimum ratio between the TIF and its tar-
get across the ability points, while the objective should be maximised.
The IMAX model presented in (2.6) — (2.10) is a reformulation of the

maximin model in such a way that the similarities and di erences with the
IMIN model become apparent:

maximise y (2.6)

subject to: y

P
i

Iikxi

Tk
k (2.7)X

i

qinxi Qn n (2.8)

C`m
X
i

cimxi Cum m (2.9)

pr (x) = 1 r (2.10)

xi =

½
1, item i in the test
0, else

i.

The purpose of the model is to maximise the information in the test at
that ability point for which the ratio between reached and target is minimal.
Thus, the total information of the test is maximised while adhering to the
target TIF shape as much as possible.

2.3 Genetic Algorithms

Eiben and Smith (2003) discuss five important elements of genetic algo-
rithms: representation, mate selection, recombination, survival, and fitness.
In the case of ATA models, solutions are candidate tests, and these tests
are represented by chromosomes that are strings with genes assuming value
0 or 1. The gene at position i is directly related to decision variable xi. In
iteration t, the population of tests evolves into the population of iteration
t+1 through three steps: mate selection, recombination, and survival. With
population size N , N/2 pairs of parents are selected that create two chil-
dren. The probability that a test is selected as a parent is assumed to be
a monotonically increasing function of the test’s fitness. A usual choice is
to assume that the probabilities are proportional to the fitnesses. Initially,
the two newly created child-tests are identical to their parents, and a re-
combination process consisting of crossover and mutation modifies these

2.3 Genetic Algorithms 25

children. Crossover can be seen as the exchange of items between the two
children. With one-point crossover, a cut position is selected randomly, af-
ter which the items in one part of the pool are exchanged. With uniform
crossover, a decision to exchange or not is randomly taken for each item
in the pool. Mutation can be seen as the introduction or removal of items:
Each gene has a small chance pμ to flip its value, or each item in the pool
has a chance either to be added to the test or to be removed from the test.
After creation of N children, a survival mechanism reduces the population
to its original size N . It is assumed that the chance of survival is a function
of the fitness, similar to the chance of being selected as a parent.

2.3.1 Fitness

Since Holland (1975) has shown that for certain assumptions regarding the
genetic algorithm, the population evolves towards the maximum of the fit-
ness function, the objective and fitness function are closely related. For
unrestricted problems, the fitness function may be chosen identical to the
objective. ATA models, however, are always restricted. A usual choice to
process restrictions is defining a penalty function for all infeasible solu-
tions. Richardson, Palmer, Liepins, and Hilliard (1989) have shown that
penalties that are functions of the distance to the feasible region are ex-
pected to perform best. Therefore, for violated restriction

P
i aixi b, the

penalty function can be defined as g(x) = (
P
i aixi b), while for objec-

tive c(x) the fitness function is defined as f(x) = c(x) g(x). Coe cient
is called the penalty multiplier. The use of penalty functions is versatile in
the sense that many restrictions can be added without the need to redesign
the implementation.
The proposed fitness function for the IMAX model is composed of the

minimal ratio between the TIF and its target, and of penalty terms for
each violated restriction:

26 2. IRT Test Assembly Using Genetic Algorithms

f(x) = min
k

½P
i Iikxi
Tk

¾
g(x) (2.11)

g(x) =
X
n

h
³X

i
qinxi Qn

´
+ μ

X
m

h
³
C`m

X
i
cimxi

´
+ μ

X
m

h
³X

i
cimxi Cum

´
+

X
r

1 pr (x) (2.12)

h(u) =

½
u, u > 0
0, u 0

.

The values of , μ and , however, should be chosen carefully. Le Riche,
Knopf-Lenoir, and Haftka (1995) have shown that the best rule is to assign
values as low as possible, just above the values for which the maximum
of the fitness is located in the infeasible region, and called this rule the
minimum penalty rule. A high penalty might cause a situation in which
infeasible solutions are removed very quickly. But invaluable genetic in-
formation, combinations of items that might be crucial to optimal and
near-optimal tests, might be lost before this information is passed on to
feasible o spring. Premature convergence, a situation in which all diversity
in the population has been lost, might be the result.
The range of values that are too low, however, is unknown and may vary

widely from restriction to restriction, as is illustrated in the example given
in Appendix B. Therefore, Siedlecki and Sklanski (1989) suggest to use a
variable penalty scheme with the following outline: Consider consecutive
iterations, each with the test having the highest fitness. Thus, , possibly
identical, tests are considered. If all these tests appear to be infeasible,
raise the penalty multiplier by multiplying it by 1+ , since it seems to be
plausible that the current optimum of the fitness function is infeasible. If
all these tests are feasible, lower the multiplier by multiplying it by 1 ,
since a penalty too high might incur premature convergence. In all other
cases, leave the penalty multiplier unchanged.
Note that the fitness function in (2.11) yields negative values when the

penalty is larger than y. If a proportional probability scheme is used for
mate selection or survival, the fitness function should be altered. Therefore,
the fitness function is redefined as

2.4 Simulation Studies 27

f(x) =
min
k

nP
i Iikxi
Tk

o
1 + g(x)

(2.13)

in order to prevent the occurrence of negative values. An alternative option
is to assume a di erent probability scheme. Two such schemes are widely
used, linear scaling and rank based scaling. In linear scaling, the probabili-
ties are proportional to a linear transformation of the fitness. In rank based
scaling, all tests are sorted according to their fitness, after which each test
is assigned a rank number. The test with the lowest fitness is assigned a
user defined valueMIN , the second-lowestMIN+1, etc. The probabilities
are then defined to be proportional to these rank numbers.
The ratio between the chances of selecting the best and the worst test can

be regarded as a kind of pressure on the population: The greater this pres-
sure, the less the opportunity for tests with low fitnesses to pass on their
genes to o spring. A pressure too high might lead to premature conver-
gence, while a pressure too low might slow down the evolutionary process.
With proportional selection, this pressure may vary widely over the itera-
tions. The advantage of the scaling mechanisms is that the pressure can be
controlled precisely.

2.4 Simulation Studies

Simulations consisting of three phases were conducted. In the first phase,
some preliminary questions had to be answered, such as choice of the
crossover operator, mate selection, and survival strategy. In the second
phase, a number of variable penalty schemes were evaluated. In the third
phase, a stopping rule was devised and a comparison was made with a
linear programming method in order to test the GA for its usefulness.
Two di erent problems of the IMAX model were used, which both were

based upon the same item pool consisting of 500 items with parameters
simulated according to the two-parameter model with log() N(0, 0.4)
and N(0, 1). All items were coded with respect to two di erent clas-
sifications. The first classification consisted of four categories labelled as
101, 102, 103 and 104. These categories were filled with 250, 125, 85 and
40 items, respectively. The second classification contained ten categories
labelled as 201, ..., 210, which contained equal numbers of items.
The simplest test assembly problem, Problem 1, had four restrictions

related to the target for the TIF: T = 1.5 = 4, T = 0.5 = 8, T =0.5 =
8, T =1.5 = 4 and one resource restriction:

P
i xi 40. No content re-

strictions based on the classification structure described above were used.
Problem 2 was an extension of Problem 1, in which 40 content restrictions
were added. From each combination of two categories, the first from the

28 2. IRT Test Assembly Using Genetic Algorithms

range 101, ..., 104, and the second from the range 201, ..., 210, exactly one
item was required in the test. In addition, Problem 2 had two interitem
relations that exclude combinations of items that were observed to be in-
cluded earlier in the vast majority of good tests constructed without these
relations. Problem 2 had 47 restrictions in total.

2.4.1 First-Phase Simulations

In the first phase, some preliminary questions were answered:

• Is there a di erence in performance between the variable and the
fixed penalty schemes?

• Which crossover operator should be used: one-point or uniform cross-
over?

• Which strategy for mate selection should be used: proportional-to-
fitness, linear scaling, or rank based scaling?

• Which strategy for survival should be used: a deterministic one al-
lowing the best N individuals to survive or selection proportional to
the fitness?

All results mentioned below are based on 400 tests assembled for each
condition. The standard case is a variable penalty scheme with = 20,
= 0.11 and = 0.08, together with uniform crossover, mate selection

proportional to fitness, and deterministic survival. The current best so-
lutions at certain iterations, and the iteration in which this solution was
found, were reported. Sometimes, a good solution was found after which
a long period of no improvement followed. The algorithm was stopped at
8000 iterations, after which the feasible solution with the highest fitness as
well as the iteration at which it was found were reported. This was also
the procedure for Problem 2, except that the process was stopped after
32000 iterations. In all cases, an initial population of 100 tests was ran-
domly generated with each gene having a chance of 40

500 of assuming the
value 1.
Elitism, the principle that the best solution is guaranteed to survive to

the next iteration, was used throughout the simulations. For the variable
penalty schemes, the elitist strategy should be commented upon. As the
variable penalty scheme modifies the penalty function at every iterations,
the best solution might not remain the best during multiplier update. In
that case, the elite position shifts towards a di erent solution. But when the
best solution was feasible at the update, a copy of it was preserved outside
the actual algorithm and reported as the optimal solution if necessary. In
Table 2.1, the progress of the algorithm is shown for the base line settings
for Problems 1 and 2.

2.4 Simulation Studies 29

TABLE 2.1. Best Fitness and Iteration when Found during Optimisation

Fitness Found at Iteration
Iteration M SD M SD

Problem 1
250 1.969 0.169 4.3 2.0
500 4.563 0.029 440 51
1000 4.583 0.025 760 180

2000 4.592 0.022 1200 460
4000 4.597 0.019 2000 1000
8000 4.601 0.017 3300 2200

Problem 2
250 3.636 0.078 240 6.9
500 3.712 0.078 400 68
1000 3.741 0.070 680 220
2000 3.758 0.066 1100 500

4000 3.771 0.063 1900 1100
8000 3.781 0.058 3300 2300
16000 3.792 0.055 6500 4800
32000 3.805 0.052 13200 10000

A fitness value of 1.969 in Table 2.1 means that the average fitness of
the best feasible solution at iteration 250 was 1.969 for Problem 1. Since
penalty function g(x) in (2.12) had value 0 for all feasible solutions, the
fitness function value f(x) was equal to y in (2.6). Thus, at iteration
250, the TIF of the current best test for Problem 1 exceeded, on aver-
age, I = 1.5 = 7.876, I = 0.5 = 15.752, I =0.5 = 15.752, I =1.5 = 7.876.
Note that all replications found feasible solutions for both problems before
iteration 250.
It can be seen that in iteration 250, the current best test was found at

approximately iteration 4, and thus that until iteration 250, no feasible
test with higher information was found. During this period, the population
evolved into the infeasible region. After some time, the population evolved
back into the feasible region again, but now into a part of it with much
higher fitnesses. Feasible solutions with high objective function values were
found again.
The relatively large standard deviation of the iterations at which the

best solutions were found is an indication of the sometimes long intervals
between improvements.
In the following sections, only the final results are given. The fitness

during the iterations is not shown, but a graphical display of the best
solutions and the iterations at which they were found is given instead for
some conditions.

30 2. IRT Test Assembly Using Genetic Algorithms

Penalty

Four conditions were investigated: one variable penalty scheme with =
20, = 0.11, and = 0.08 and three fixed penalty schemes: low with
= 0.004,μ = 0.006, = 0.01; medium with = 0.02,μ = 0.03, = 0.05;

high with = 0.1,μ = 0.15, = 0.25. The rationale behind these schemes
was the assumption that the optimal values for a fixed penalty scheme
should follow the minimal penalty rule, while the variable penalty scheme
follows the minimal penalty rule automatically. The penalty multiplier val-
ues converge to the optimal penalty multiplier values. At the end of the
simulations for the variable penalty scheme, the average penalty multiplier
for Problem 1 was = 0.02. For Problem 2, the multipliers were = 0.02,
μ = 0.03, and = 0.05. In real-world situations, however, these optimal
values are not known in advance and a scheme with somewhat di erent
multipliers would be chosen. Therefore, the low and high schemes were
considered as well.

TABLE 2.2. Best Fitness and Iteration when Found for Di erent Penalty Schemes

Fitness Found at Iteration
Penalty M SD M SD

Problem 1
Variable 4.601 0.017 3300 2200
Low 1.866 0.142 2.9 1.4

Medium 4.583 0.132 3400 2200
High 4.550 0.049 5300 2000

Problem 2
Variable 3.805 0.052 13200 10000
Low
Medium 3.721 0.079 19000 9000
High 3.501 0.129 23800 7000

Table 2.2 presents the final results for the penalty schemes. The multi-
pliers of the low penalty scheme were clearly too low since the solutions
that were presented as optimal appeared to be infeasible. The optima for
the fitness and objective did not coincide. For Problem 1, feasible solutions
were found only in the very first iterations and reported here. After those
first iterations, the population moved well into the infeasible region towards
the point where the best fitness was found. The low scheme did not find
any feasible solution at all for Problem 2.
On the other hand, the medium scheme seemed to be a proper strategy

for a fixed penalty scheme. It should be noted, however, that in 8 cases
the medium penalty scheme failed to find any feasible solution for Problem
2 within 32000 iterations. All simulations produced a feasible solution for

2.4 Simulation Studies 31

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

100 1000 10000 100000

Iteration

Fi
tn

es
s Variable

Medium
High

FIGURE 2.1. Increase of Fitness for Di erent Penalty Schemes (Problem 2)

the high scheme but the average fitness was lower. So the medium scheme
might have had penalty multiplier values that were slightly too low.
Although the results suggest that the di erences between the variable

and medium schemes were not very great, the superiority of the variable
penalty scheme becomes clear in Figure 2.1, where the current best fitness
is shown as a function of the iteration at which it was found. Combining
the data in Table 2.2 and in Table 2.1 shows that, even while the medium
penalty scheme was the best fixed penalty scheme in this study, the fitness
found at approximately 19000 iterations was comparable with that found
at approximately 500 iterations with the variable penalty scheme. For the
high penalty scheme, the performance was even considerably worse. For
the variable penalty scheme, the solutions found within an average of 240
iterations were better than those found at 24000 iterations for the high
scheme.

Crossover

Two crossover operators were considered: uniform crossover and one-point
crossover. Since neighbouring items in the bank have in general no relation-
ship with each other, neighbouring genes in the chromosomes do not form
building blocks. Thus, it might be assumed that uniform crossover would
propagate at least as fast as the one-point crossover while maintaining the
necessary variation in the population.
It can be inferred from Table 2.3 that the di erences in fitness were

relatively small. However, since the optimisation process was rather slow,

32 2. IRT Test Assembly Using Genetic Algorithms

TABLE 2.3. Best Fitness and Iteration when Found for Di erent Crossover Op-
erators

Fitness Found at Iteration
Crossover M SD M SD

Problem 1
Uniform 4.601 0.017 3300 2200
One-point 4.591 0.022 5000 2100

Problem 2
Uniform 3.805 0.052 13200 10000
One-point 3.772 0.071 16900 9600

a large di erence in number of iterations could be observed. This can also
be seen in Figure 2.2 or by combining the data in Table 2.3 and in Table
2.1. One-point crossover reached a fitness of 3.772 in an average of 16900
iterations while uniform crossover reached the same result in just over 1900
iterations. Therefore, uniform crossover was chosen.

3.3

3.4

3.5

3.6

3.7

3.8

3.9

100 1000 10000 100000

Iteration

Fi
tn

es
s

Uniform
One-point

FIGURE 2.2. Increase of Fitness for Di erent Crossover Operators (Problem 2)

Scaling

The base line condition we used involved mate selection proportional to
fitness. This condition was compared with two variants of the scaling tech-
niques mentioned earlier: an aggressive variant in which the worst test was
not selected at all and a more conservative variant where the worst test did

2.4 Simulation Studies 33

have a chance to be selected. So five di erent conditions were investigated
in total:

1. Selection proportional to fitness.

2. Linear scaling (Linear 1). In each iteration, the transformation coef-
ficients were determined such that the worst test did not procreate.

3. Linear scaling (Linear 2). The transformation coe cients were de-
termined such that the worst test had a chance half as high to be
selected as the best test.

4. Rank based scaling (Rank 1). The user defined constant MIN had
the value 0. This meant that the worst test was not selected.

5. Rank based scaling (Rank 2).MIN had value 100, so that the chance
of being selected for the worst test was half as high as for the best
test.

TABLE 2.4. Best Fitness and Iteration when Found for Di erent Scaling Types

Fitness Found at Iteration
Scaling M SD M SD

Problem 1
Proportional 4.601 0.017 3300 2200

Linear 1 4.594 0.023 3900 2200
Linear 2 4.597 0.018 3400 2200
Rank 1 4.595 0.022 3700 2200

Rank 2 4.600 0.014 3400 2200

Problem 2
Proportional 3.805 0.052 13200 10000

Linear 1 3.784 0.064 15600 9900
Linear 2 3.805 0.052 14500 9900
Rank 1 3.791 0.060 14700 9600
Rank 2 3.805 0.052 15000 10100

As reported in Table 2.4, di erences in performance between scaling tech-
niques were minimal. Especially the di erence between the conservative
scaling variants and proportional selection appeared to be negligible. This
is also illustrated in Figure 2.3 for Problem 2. It should be noted that the
high selection pressure provided by the large di erentiation between the
good and bad individuals was counterproductive. Mate selection should be
more explorative so that the genetic material of individuals of low fitness
has a chance of being recombined into superior o spring. The conclusion is

34 2. IRT Test Assembly Using Genetic Algorithms

that the choice between the more explorative alternatives did not seem to
have a large influence on the optimisation process. Therefore the simplest
technique, proportional selection, was chosen.

3.55

3.6

3.65

3.7

3.75

3.8

3.85

100 1000 10000 100000

Iteration

Fi
tn

es
s

Proportional
Linear 1
Linear 2
Rank 1
Rank 2

FIGURE 2.3. Increase of Fitness for Di erent Scaling Techniques (Problem 2)

Survival

The first issue regarding survival is whether identical tests should be al-
lowed to survive or not. Allowing duplicates to survive to the next iteration
might result in the situation that a highly fit test generates many dupli-
cates, even to the extent that the whole population consists of duplicates
only, and no search direction can be found. Creation of duplicate chromo-
somes was therefore not allowed in any of the strategies, thus retaining a
necessary level of variety in the population.
All survival strategies started with the removal of newly created dupli-

cates. Thereafter, two conditions were possible: a deterministic scheme with
survival of the N best solutions and a stochastic one that used a linear scal-
ing technique where the chance of survival for the best test was twice as
high as for the worst test. The rationale behind this scaling procedure was
that after only a few iterations the population might have converged to
such an extent that the ratio between the highest and lowest fitness would
be close to 1. In that case, all individuals would have about equal chance
to survive and the selection pressure would disappear. The linear scaling
magnified the small di erences in fitness and maintained the pressure.
As can be inferred from Table 2.5 and Figure 2.4, the stochastic strategy

was clearly less e cient than the deterministic strategy. Therefore, only
the deterministic strategy was used in the remainder of this study.

2.4 Simulation Studies 35

TABLE 2.5. Best Fitness and Iteration when Found for Di erent Survival
Schemes

Fitness Found at Iteration
Survival M SD M SD

Problem 1
Deterministic 4.601 0.017 3300 2200
Stochastic 4.473 0.048 6300 1500

Problem 2
Deterministic 3.805 0.052 13200 10000
Stochastic 3.612 0.103 24300 7300

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

100 1000 10000 100000

Iteration

Fi
tn

es
s

Deterministic
Stochastic

FIGURE 2.4. Increase of Fitness for Di erent Survival Schemes (Problem 2)

2.4.2 Second-Phase Simulations

In the second phase, the variable penalty scheme was investigated, using
the best strategies found in the first phase. The question to be answered
was what values , , and gave a good performance. Six variable penalty
schemes were investigated. Three iteration cycles with = 10 (fast), = 20
(moderate), and = 40 (slow) were combined with two adaptation schemes
with = 0.11, = 0.08 (high), and = 0.03, = 0.02 (low). The algorithm
was stopped after 16000 iterations for Problem 1 and 32000 iterations for
Problem 2. As with the preceding simulations, the best solution and the
iteration at which it was found were reported.

36 2. IRT Test Assembly Using Genetic Algorithms

TABLE 2.6. Best Fitness and Iteration when Found for Di erent Variable Penalty
Schemes

Fitness Found at Iteration
Penalty Scheme M SD M SD

Problem 1
Fast/Low 4.603 0.016 5600 4500
Moderate/Low 4.605 0.014 5600 4100
Slow/Low 4.605 0.013 6200 3600

Fast/High 4.601 0.017 5400 4400
Moderate/High 4.603 0.015 5300 4400
Slow/High 4.606 0.013 5200 4400

Problem 2
Fast/Low 3.811 0.050 14300 10300
Moderate/Low 3.829 0.040 12800 9700
Slow/Low 3.829 0.039 13100 9800
Fast/High 3.791 0.057 15400 9900

Moderate/High 3.805 0.052 13200 10000
Slow/High 3.818 0.049 13400 9800

3.7

3.72

3.74

3.76

3.78

3.8

3.82

3.84

100 1000 10000 100000

Iteration

Fi
tn

es
s

Fast/Low
Fast/High
Mod./Low
Mod./High
Slow/Low
Slow/High

FIGURE 2.5. Increase of Fitness for Di erent Variable Penalty Schemes
(Problem 2)

Table 2.6 shows that, in general, the slow iteration cycles performed
somewhat better than the fast and moderate cycles. Similarly, the low
adaptation schemes seemed to win from the high adaptation schemes. The
slow-high scheme performed somewhat better than the slow-low scheme.

2.4 Simulation Studies 37

Although this was not strictly true for Problem 1, it should be noted that
this much simpler problem needed considerably fewer iterations. Therefore,
the slow-low penalty scheme seemed to be the most appropriate choice
for both cases. One phenomenon should be considered, however. As can
be seen in Figure 2.5, the slow-low and moderate-low schemes tended to
produce feasible solutions rather late in the process while the other schemes
produced feasible solutions earlier. Especially in combination with very
quick stopping rules, this might lead to the unsatisfactory situation that
no solution is found at all. In such cases, it might be wise to consider one
of the other schemes or to modify the stopping criterion to accommodate
this phenomenon.

2.4.3 Third-Phase Simulations

For the third phase, a new stopping rule was developed. Until now, the
simulations were based on a fixed stopping rule. After a fixed number of
iterations the process was stopped and the best solution so far was consid-
ered. Before the simulations of phase three were conducted, optima were
evaluated using CPLEX (2002) as a reference. For Problem 1, the optimal
value was 4.620, for Problem 2, 3.920. However, before a comparison could
be made, a better stopping rule had to be devised.
Various rules were examined for their usefulness, either for a quick or

a more thorough optimisation. The simplest rule was similar to the fixed
rule used before: stop after a fixed number of iterations. As more complex
models might need more iterations to converge, the stopping rule should
be a function of the number of items in the bank L and the total num-
ber of restrictions K. Stopping after LK iterations would give fast results
while the deviations from the reported optima might be acceptable in many
practical applications. Two further stopping rules were considered for ap-
plications that require results better than those found by the LK-rule. One
was stopping after LK log(LK). As this rule would need considerably more
iterations, we studied a compromise between the two rules and stopped af-
ter LK log(K) iterations.
Other rules were based on the convergence of the optimisation process.

Two types of convergence could be distinguished. The first type was based
on the ratio between online and o ine performance. Online performance
is defined as the average fitness of all tests in a generation, and o ine
performance as the average fitness of a small number of the best tests.
This small number is usually defined as 5 - 10% of the population. In the
previous simulations it was observed that the ratio started at about 0.70,
rising to approximately 0.995 at the moment that the current best test was
approximately 2 - 5% from the optimum.
The second type of convergence was based on the creation of new feasi-

ble tests. If, for a certain period of time, no feasible tests were created that

38 2. IRT Test Assembly Using Genetic Algorithms

would rank somewhere in the top of current best tests, then the algorithm
was stopped. The intervals between improvements could be estimated from
the previous simulations. We assumed that finding an improved test within
the next few iterations was proportional to the number of iterations, and
that the time needed to find an improvement was independent from times
needed for other improvements. And though improvements are generally
easier to find in early phases of the process, we assumed that the improve-
ment density was constant over populations with equal average fitness.
Under these assumptions, the improvements can be modelled as a Poisson
process, whereby the interval between the iterations at which the previous
improvements were found and the report iterations in the previous simu-
lations was used as an indication of the expected time needed to find the
next improvements. Furthermore, we assumed that an improvement in the
n best tests was approximately n times more likely than an improvement in
the single best test. We may therefore derive from interpolations in Table
2.1, that stopping when no change had been observed in the 10 best tests
in LK

10 iterations, would find a solution within 2% from the optimum. Both
stopping rules based on convergence, however, needed a fixed rule in case
the criterion was never met.
In total, 5 stopping rules were examined:

1. Stop after LK iterations.

2. Stop after LK log(K) iterations.

3. Stop after LK log(LK) iterations.

4. Stop when the online - o ine performance ratio is 0.995.

5. Stop when no change in the 10 best tests is found within LK
10 itera-

tions.

Three problems were considered: Problem 1 and 2 used in the earlier
simulations and Problem 3, based on an item pool for Turkish reading
comprehension. The pool contained 205 items calibrated with the OPLM
model by Verhelst, Glas and Verstralen (1995). The items were coded with
respect to five themes: home, public situations, work related, study, and
other. The categories contained 43, 115, 11, 37, and 3 items, respectively.
Problem 3 involved an equal standard error of measurement at three critical
ability levels as well as a content balancing over the five categories, requiring
5, 15, 3, 5, and 2 items. Together with a test length restricted to 30 items,
Problem 3 consisted of 9 restrictions.
It can be inferred from Table 2.7 that the stopping rules based on con-

vergence were outperformed by the fixed stopping rules. Frequently, a lower
fitness was reached after, on average, a larger number of iterations. More-
over, since the standard deviation of the number of iterations was rather
high, the required calculation time became unpredictable. The stopping

2.4 Simulation Studies 39

TABLE 2.7. Best Fitness and Number of Iterations for Di erent Stopping Rules

Fitness Iterations
Rule M SD M SD

Problem 1
1 4.599 0.019 2500
2 4.606 0.016 4024
3 4.615 0.008 19560

4 4.597 0.021 2700 760
5 4.602 0.019 3100 700

Problem 2
1 3.827 0.041 23500
2 3.843 0.035 90478

3 3.852 0.033 236522
4 3.813 0.055 28900 33100
5 3.832 0.040 45200 28500

Problem 3
1 11.483 0.013 1845
2 11.484 0.012 4054

3 11.486 0.009 13875
4 11.483 0.014 1300 55
5 11.484 0.013 2600 600

rules based on a criterion of convergence were therefore not considered any
further.

TABLE 2.8. Best Fitnesses and Percentages of Deviation from the Optimum

Rule Problem 1 Problem 2 Problem 3
LK 0.4% 2.4% < 0.1%
LK log(K) 0.3% 2.0% < 0.1%
LK log(LK) 0.1% 1.7% < 0.1%

Optimum 4.620 3.920 11.488

Assuming that a solution within a 5%-bandwidth from the optimum
should be found, stopping rule 1 will generally be su cient for the three
instances that were investigated, although the deviations presented in Table
2.8 do not hold for individual cases, but for averages. When a solution
within 2% from the optimum is preferred, stopping rule 3 could be chosen
for Problem 2.

40 2. IRT Test Assembly Using Genetic Algorithms

2.5 IMIN Model

The proposed fitness function for the IMIN model is similar to the fitness
function of the IMAX model. Since the objective function has to be min-
imised while the fitness function has to be maximised, a transformation is
needed that at the same time prevents the occurrence of negative fitness
values:

f(x) =

μ
1

1 +
P
i qi0xi

¶μ
1

1 + g(x)

¶
(2.14)

g(x) =
X
k

h
³
Tk

X
i
Iikxi

´
+

X
n

h
³
Qn

X
i
qinxi

´
+μ

X
m

h
³
C`m

X
i
cimxi

´
+ μ

X
m

h
³X

i
cimxi Cum

´
+

X
r

1 pr (x) .

2.5.1 Epistasis and the IMIN Model

When using the test length as the objective, there are many solutions with
equal objective function values. Since all feasible solutions with the same
objective function value will have the same fitness, epistasis is the result.
Then a GA cannot discriminate between solutions, and the process might
stagnate because of lack of a search direction. An obvious way to reduce
the epistasis is to allow small di erences in fitness. This way every solution
has a unique fitness. These di erences, however, should not be assigned
randomly to the solutions but should have some meaningful value in order
to accelerate the optimisation process.
Given two feasible tests, it is easier to retain feasibility when removing

an item from the more informative test than from the less informative test.
Thus, a reward should be assigned to the solutions for each surplus unit of
information they have and the fitness function in (2.14) should be replaced
by

f(x) =

μ
1

1 +
P
i qi0xi

¶μ
1 +

P
k h (

P
i Iikxi Tk)

1 + g(x)

¶
. (2.15)

The reward should not be too high, though. If it is so high that adding an
item to a feasible test compensates for the loss in fitness, the optimum for
the fitness function does not coincide with the optimum for the problem. If
the removal of an item results in a feasible test, it should always be more
profitable than the reward for keeping it in the test.

2.5 IMIN Model 41

2.5.2 Simulations

In order to investigate the usefulness of the reward scheme, simulations were
performed. As a first step, several reward schemes were simulated using
three problems based on the same item bank as the problems for the IMAX
problems: Problems 4, 5 and 6 respectively. Problem 4 had four restrictions
on the TIF with T = 1.5 = 12, T = 0.5 = 24, T =0.5 = 24, T =1.5 = 12. For
Problem 5, two sets of classification restrictions were defined: For categories
101, ..., 104, the maximum percentages of items were 55, 30, 20 and 10,
while for categories 201, ..., 210, the maximum percentages were 20. The
same principle was used for Problem 6 but 20 - 30% of the items had to
be in categories 101, ..., 104, while for categories 201, ..., 210 the ranges
were 5 - 15%. Note that the classification restrictions in the IMIN model
needed a small modification to accommodate the use of fractions of the test
length instead of a fixed number of items. Therefore, restrictions in (2.4)
were replaced by

C`m

P
i cimxiP
i xi

Cum m. (2.16)

A fixed stopping rule was applied: 8000 iterations for Problem 4 and 32000
iterations for Problems 5 and 6. Furthermore, a slow and low adaptation
scheme was used.

TABLE 2.9. Best Fitness and Iteration when Found for Di erent Reward Schemes

Fitness Test Length Found at Iteration
Reward M SD M SD M SD

Problem 4
0 0.6641 0.0054 25.30 0.62 1600 2100
0.0001 0.6742 0.0033 24.17 0.38 2700 2000
0.001 0.6752 0.0025 24.15 0.36 2600 2000
0.01 1.0632 0.0026 44.06 0.23 730 1200

Problem 5
0 0.6636 0.0063 25.36 0.72 6300 7600

0.0001 0.6734 0.0038 24.26 0.44 8900 8800
0.001 0.6744 0.0029 24.23 0.42 6500 8100
0.01 1.0636 0.0016 44.02 0.14 2000 3800

Problem 6
0 0.6489 0.0045 27.05 0.54 5400 6400
0.0001 0.6571 0.0026 26.11 0.32 10600 9000
0.001 0.6583 0.0019 26.11 0.31 11000 9600
0.01 1.0414 0.0016 46.02 0.15 3400 5300

42 2. IRT Test Assembly Using Genetic Algorithms

From Table 2.9 it can be seen that the reward scheme e ectively pre-
vented epistasis and improved the performance of the process. Just the
fact that a reward scheme was used seemed important, as long as the order
of magnitude for was appropriate. It can clearly be seen that too high a
value of caused the optimal solutions for the fitness and the objective to
be di erent. Therefore, = 0.0001 was used in the subsequent simulations.

24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

100 1000 10000

Iteration

Te
st

 L
en

gt
h

0.0000
0.0001
0.0010

FIGURE 2.6. Decrease of Test Length for Di erent Reward Schemes
(Problem 5)

In the second phase stopping rules were investigated. Two fixed stopping
rules were used: The first one stopped the process after LK iterations for
a rapid optimisation, the second after LK log(LK) iterations for a more
thorough optimisation.
From Table 2.10 it can be concluded that for all problems investigated,

the average test lengths were within a 2% bandwidth from the optimum.
Note that this holds for the average test lengths only but not for individual
replications as only integer values could occur. For Problem 5, the fast
stopping rule found a test of 24 items in 54% of the cases, while in 46%
of the cases the best test length was 25. This was well outside the 2%
bandwidth. On the other hand, if one would accept a 25-item test, Figure
2.6 suggests that in many cases this would have been found well before the
stopping criterion.

2.6 Conclusion

The results presented in this paper show which implementation of genetic
algorithms solved the presented test assembly problems best. Important

2.6 Conclusion 43

TABLE 2.10. Best Test Lengths and Percentages of Deviation from the Optimum

Test Length Deviation
Rule Iterations M SD

Problem 4
LK 2500 24.35 0.48 1.4%
LK log(LK) 19560 24.14 0.34 0.6%

Optimum 24

Problem 5
LK 9500 24.46 0.50 1.9%

LK log(LK) 87011 24.10 0.30 0.4%

Optimum 24

Problem 6
LK 9500 26.19 0.39 0.7%
LK log(LK) 87011 26.07 0.26 0.3%

Optimum 26

issues in optimisation, like convergence criteria and speed, are theoretically
very hard to deal with. Therefore, simulation studies were used to determine
appropriate parameter settings and to demonstrate the usefulness of genetic
algorithms for solving test assembly problems.
In general, variable penalty schemes with longer iteration cycles (= 40),

and low adaptation (= 0.03, = 0.02), together with uniform crossover,
more explorative mate selection and a rigorous survival scheme gave good
results. Stopping after LK iterations yielded a feasible solution within 2%
of the optimum for nearly all problems.
Being very versatile methods, GAs can successfully be employed to solve

test assembly problems. Although they are in general not extremely e cient
for problems that can be solved by traditional methods, their strength lies
in the ease to accommodate restrictions that appear to be cumbersome for
other methods, like interitem relations or for solving nonlinear models.

44 2. IRT Test Assembly Using Genetic Algorithms

3
An Approximation of Cronbach’s
and its Use in Test Assembly

3.1 Introduction

Test assembly modelling for classical test theory has been a somewhat ne-
glected field. It concerns the selection of items from a pool in such a way
that the reliability of the resulting test is maximised under conditions like
a fixed test length, a taxonomic make up, and other demands. Assembling
a test with maximum reliability involves nonlinear models, which are di -
cult to solve using traditional optimisation techniques. Adema and van der
Linden (1989) were the first to circumvent this di culty by formulating
a linearisation of the reliability of the test. Armstrong, Jones and Wang
(1994) took a di erent approach by formulating the problem as a network
flow model. Both models can be solved using standard integer linear pro-
gramming methods, but are prone to yielding suboptimal solutions or are
applicable in specific contexts only.
In this paper, two test assembly models are introduced that use an ap-

proximation of Cronbach’s as an operationalisation of the reliability of
the test. Utilising optimisation techniques like genetic algorithms (GAs),
introduced by Holland (1975), it is possible to solve this class of models
e ciently without loss of generality as in the network flow models of Arm-
strong et al.
GAs optimise problems by emulating principles from evolution theory

in biology. A population of solutions, represented by chromosomes, is sub-
ject to an evolutionary process. Every chromosome in the population has a
chance to mate with another chromosome, creating o spring through a re-

46 3. An Approximation of Cronbach’s and its Use in Test Assembly

combination process. Subsequently, a “survival of the fittest” rule is applied
in such a way that the population size remains constant.
Since solutions obtained through GAs cannot be proven to be optimal

either, simulation studies are conducted to investigate the solutions found,
and these solutions are compared with solutions obtained for a model sim-
ilar to Model II of Adema and van der Linden.

3.2 CMAX Model

In classical test assembly a key notion is the reliability 2
XT of the to-be-

assembled test or, more specifically, its lower bound Cronbach’s coe cient
, given by

=
k

k 1

½
1

P
i

2
i

2
X

¾
=

k

k 1

(
1

P
i

2
i

(
P
i it i)

2

)
(3.1)

where k is the test length, 2
i is the variance of item i, and it the correlation

between the item score and test score. Using equation (3.1), a test assembly
model can be formulated for situations in which the test assembler wishes
to assemble a test with maximum while adhering to test specifications
regarding the use of limited resources like test length or test time, a desired
di culty range, a taxonomic makeup and restrictions at the item level:

maximise =

P
i
xiP

i
xi 1

1

P
i

2
ixi

(
P
i it ixi)

2 (3.2)

subject to: P `

P
i

ixiP
i
xi

Pu (3.3)

X
i

qinxi Qn n (3.4)

C`m
X
i

cimxi Cum m (3.5)

pr (x) = 1 r (3.6)

xi =

½
1, item i in the test
0, else

i.

Variables xi are the decision variables indicating whether an item is selected
or not. Coe cient i denotes the di culty of item i, for dichotomously
scored items defined as the expected score given by a randomly selected
testee from the population of interest. P ` and Pu define the range in which
the average item di culty, in classical test theory also called test di culty,

3.2 CMAX Model 47

should be. The restrictions in (3.4) put a limit to the use of certain re-
sources, for example, the number of items in the test or the time allotted
to take the test. Qn is the total amount of the resources the test assembler
is willing to spend, while coe cients qin are the resource parameters of
item i. These parameters indicate how much of a certain type of resources,
for example, test time, will be spent if the item is in the test. As can be
derived from the Spearman-Brown formula for test lengthening, the easiest
way to maximise Cronbach’s is to use more items in the tests as long as
items can be found that leave that leave other test properties equal, pos-
sibly ad infinitum. So, resource restrictions in (3.4) prevent this situation.
Next to these, the restrictions in (3.5) define a desired taxonomic makeup
of the test. Coe cients cim are the classification parameters having value
1 if item i belongs to category m and 0 otherwise, while C`m and C

u
m define

the desired range of items in the classification categories. A third group of
restrictions in (3.6) concerns with the item level. These are called interitem
relations. When building large item pools, it is almost inevitable that this
type of relations is needed. Common examples of interitem relations are en-
emy sets and testlets. Enemy sets are groups of mutually excluding items
while testlets are groups of mutually including items. Theunissen (1996)
has shown that sometimes other, more complicated relations are necessary.
These relations can be formulated as well, using Boolean operators , and
¬. Function pr (x) denotes the di erential payo function for relation r. An
example of how an interitem relation can be transformed into a restriction
based on the payo function is elaborated in Appendix A. Note that, in
general, these restrictions are nonlinear, as can be seen in the example.
In practical situations, a problem arises as (3.2) can only be evaluated

after the test has been administered. Furthermore, even if (3.2) could be
evaluated, it would result in a nonlinear model that would need special
techniques to be solved. Therefore, Adema and van der Linden (1989) pro-
posed their Model II in which the objective in (3.2) is replaced by

maximise
X
i

ritxi (3.7)

where rit is the point-biserial correlation between item score i and the
score of the test in which the item was pretested. Their model is based on
Gulliksen’s observation (1950) that, in general, in (3.1), the sum of item
variances varies less than the test variance, and so can be expected to
depend more on the latter. This e ect is also verified by Ebel (1967) and
suggests that it is more profitable to select items with a high rit than with
a low one, and thus that it is most e cient to use (3.7) as the objective.
Adema and van der Linden’s model has the advantage that it is linear,

and thus can be optimised by the use of integer linear programming tech-
niques. In its original form, however, the model has a drawback. During
test assembly, the test to be assembled is not known, and neither are the
corresponding rit’s. This drawback can be overcome by the assumption

48 3. An Approximation of Cronbach’s and its Use in Test Assembly

that the rit’s of the newly assembled test will be very similar to the rit’s
of previous pretests.
But in general the item pools used for test assembly consist of items

originating from di erent test forms. If the test forms used in building the
item pool vary in length, items from shorter test forms are favoured without
proper ground for the following reason given by Guilford (1954, p.439):

When an item is correlated with the total score of which it
is a part, the value of rit tends to be inflated. The shorter the
test, the greater this inflation is likely to be. Even if all items
correlated actually zero with what the total score measures, and
if all item variances were equal, each item would correlate to
the extent of 1/ n, where n is the number of items.

In order to overcome this inflation, item discrimination indices are needed
that are independent from test contexts such as test length and test vari-
ance. Zubin (1934) faced this problem by concentrating on the item-rest
correlation rir. This would mean that the items would be correlated with
slightly di erent remainders. A larger drawback, however, is the fact that
if items are positively correlated with each other, coe cient rir is not in-
variant to test length either, as Guilford (1953) noted. In that case, items
originating from longer tests are favoured over items from shorter tests, all
other things being equal.
Consider the point-biserial correlations found in earlier analyses, cor-

rected for unique item variances as proposed by Henrysson (1963):

dit =

r
k

k 1

ritsX sip
s2X

P
i s
2
i

. (3.8)

Coe cient dit is claimed to be invariant to test length. In order to verify
this claim, a simulation was conducted. An item pool consisting of 500 items
was used with simulated IRT-parameters according to the two-parameter
model with log() N(0, 0.4) and N(0, 1). A population of 100,000
simulated candidates with N(0.07, 0.35) was used to generate item
scores. From this dataset, several tests with varying lengths were defined
and analysed. In Table 3.1, the rit, rir, and dit for item 1 are given for each
of the test lengths.
It is clear that even for tests of length 80 the inflation of rit and rir is still

large, while even for short tests the dit remains relatively stable. Therefore,
dit can be regarded as an item discrimination index, relatively free from
the context of the test in which it was originally included, and hence can
be denoted by di. Henrysson (1962, 1963) argues that its square, d2i , is an
estimate of the item communality in a factor analysis and that using di
instead of rit removes spurious preference towards items analysed in short
tests. Substituting di for rit in (3.7) overcomes the e ects of the context
of the pretests, but prediction of of the newly assembled test remains

3.2 CMAX Model 49

TABLE 3.1. Analysis of rit, rir and dit for Item 1

Items r1t r1r d1t
1..5 0.477 0.040 0.152
1..10 0.311 0.050 0.145
1..20 0.256 0.074 0.149
1..40 0.214 0.102 0.151

1..80 0.184 0.119 0.149
1..500 0.155 0.143 0.149

cumbersome. Calculation of new point-biserials using (3.8) is not possible
since the test variance is not known.
Now, consider the test variance to be formulated as

2
X =

X
i

2
i +

X
i6=j
Cov(Xi,Xj).

From the assumption of a one-factor model, it follows that di can be re-
garded as the factor loading of item i, and hence that i, j : Cov(Xi,Xj) =
di idj j . Therefore, the following relation can be derived as an estimate
of Cronbach’s for a newly assembled test:

=

P
i

xiP
i
xi 1

1

P
i

2
ixiP

i

2
ixi +

P
i 6=j
di idj jxixj

. (3.9)

Using (3.9), the CMAX model is formulated as

maximise

P
i
xiP

i
xi 1

1

P
i

2
ixiP

i

2
ixi +

P
i 6=j
di idj jxixj

(3.10)

subject to: P `

P
i

ixiP
i
xi

Pu

X
i

qinxi Qn n

C`m
X
i

cimxi Cum m

pr (x) = 1 r

xi =

½
1, item i in the test
0, else

i.

As the objective in the CMAX model (3.10) is nonlinear, traditional
methods based upon integer linear programming are unsuitable. On the

50 3. An Approximation of Cronbach’s and its Use in Test Assembly

other hand, Verschoor (2004) has shown that genetic algorithms (GA) are
capable of solving this class of optimisation problems e ciently.

3.3 Genetic Algorithms

Genetic algorithms are iterative processes in which a population of N so-
lutions mate, procreate, and are subject to a survival of the fittest-rule in
order to survive to the next iteration. Eiben and Smith (2003) discuss these
processes in terms of a few relevant components that can be distinguished:

Representation. Every solution is represented by a string, called a chro-
mosome, consisting of genes. Every decision variable in the CMAX
model, indicating whether an item is selected or not, is mapped onto
a gene. Thus, the chromosome length is equal to the number of items
in the pool, denoted by L.

Mate selection. This is assumed to be a stochastic process controlled by
the fitness of the solutions: the higher the fitness, the higher the
probability to be selected. Usually, the probability is chosen to be
proportional to the fitness.

Recombination. This is a process in which two newly created tests, that
are initially identical to their parents, exchange items through the
crossover operator. A common choice for test assembly models is uni-
form crossover, in which every gene, or item, has a probability of 0.5
to be exchanged between the tests. A further operator in the recombi-
nation process is mutation. Mutation can be seen as the introduction
of genetic information: Each gene has a small chance pμ to flip value.
In terms of test assembly this means that each item in the pool has
a small chance to be added to the test or to be removed from it.

Survival. After creation of N children, the population is reduced to its
original size. Verschoor (2004) has shown that removing all duplicate
solutions, and further removing as many solutions with the lowest
fitness as needed, is an e ective survival mechanism for automated
test assembly.

Fitness. Fitness is modelled as a fitness function. Holland (1975) has
proven in his schema theorem that under assumptions of selection
chances being proportional to the fitness, the population evolves to-
wards regions with high fitness.

But does evolution towards high fitnesses mean that GAs will converge
to the optimum of the fitness function? This question was answered by
Goldberg and Segrest (1987), and Eiben, Aarts and van Hee (1991) in the

3.3 Genetic Algorithms 51

field of Markov chain analysis. Their approach was to model the GA as a
Markov chain. They analysed their steady states, and for which classes of
genetic algorithms these steady states contain an optimal solution. Thierens
and Goldberg (1994) showed that for these classes the convergence can be
estimated for su ciently large populations. The chance that the population
in iteration t contains the solution with optimal fitness is asymptotically
given by Popt(t) = 1

©
1 (1 0.5e t/L)L

ªN
. Evaluating this expression

for a given problem shows that the GA will converge to the optimal solution,
but at the same time it is clear that a given solution cannot be proven to
be optimal.
The fitness function should have a relation with the objective. For un-

restricted problems, the fitness function may be chosen identical to the
objective. ATA models, however, are always restricted. A usual choice to
process restrictions is defining a penalty function for all infeasible solutions.
Richardson, Palmer, Liepins, and Hilliard (1989) have shown that penal-
ties that are functions of the distance to the feasible region are expected to
perform best. Therefore, for violated restriction

P
i aixi b, the penalty

function can be defined as g(x) = (
P
i aixi b), while the fitness function

is defined as f(x) = 1+g(x) . Coe cient is called the penalty multiplier.
A penalty function is versatile in the sense that new restrictions can be
added without the need to redesign the implementation.
Summarising, the proposed fitness function for the CMAX model f(x)

is defined by , compensated with a penalty function g(x) dependent on
the rate at which the restrictions are violated:

f(x) =
1 + g(x)

(3.11)

g(x) = h

μ
P `

P
i ixiP
i xi

¶
+ h

μP
i ixiP
i xi

Pu
¶

+
X
n

h
³X

i
qinxi Qn

´
+ μ

X
m

h
³
C`m

X
i
cimxi

´
+ μ

X
m

h
³X

i
cimxi Cum

´
+

X
r

1 pr (x)

h(u) =

½
u, u > 0
0, u 0

.

52 3. An Approximation of Cronbach’s and its Use in Test Assembly

Coe cients , , μ and are the penalty multipliers. A major question
is what value the penalty multipliers should have. If the penalty is too
low, the maximum of the fitness function is located in the infeasible space
and the population will evolve to an infeasible solution. Penalties should,
however, not be chosen too high. If infeasible solutions are eliminated too
quickly, diversity in genetic information might be lost, in extreme cases to
the extent even that crossover is almost ine ective and evolution will take
place only through mutation. This situation is called premature conver-
gence. Le Riche, Knopf-Lenoir, and Haftka (1995) confirm the e ectiveness
of the so-called minimal penalty rule: The penalty should be kept as low as
possible, that is, just above the — unknown — limit at which the optimum
of the problem and the optimum of the fitness coincide.
In concordance with the findings of Siedlecki and Sklanski (1989), a dy-

namic penalty adaptation can be used to establish the optimal values for
the penalty multipliers. Such a genetic algorithm has a penalty updating
scheme with the following outline: Consider for consecutive iterations the
tests with the highest fitness. If for all these , possibly identical, tests all
resource restrictions are met, multiply by 1 since there is a risk that
is too high, causing premature convergence. If for all tests some resource

restrictions are violated, multiply by 1+ , since this is an indication that
the population is evolving towards infeasible solutions. Leave unchanged
in all other cases, that is, that for some tests all resource restrictions are
met while for other tests there are violated restrictions. The same rule is
followed for the other penalty multipliers , μ and . Usually, has a fixed
value in the order of magnitude of 10 - 40 iterations, while and have
values in the order of magnitude of 0.02 - 0.10.

3.3.1 Simulations

Simulations were conducted in two phases. In the first phase, the dynamic
penalty scheme was investigated while in the second phase several stopping
rules were considered.
The question to be answered in the first phase is what values should ,

and have in order to give a good performance. Specifically, can a fixed set
of values be found or should they depend on the complexity of the model,
expressed in the number of restrictions?
To answer this question, three di erent test assembly problems were

used. Each problem was based upon the same item pool used earlier in the
simulations of the di-coe cients. Furthermore, all items were coded with
respect to three di erent classifications. The first classification consisted of
4 categories labelled as 101, 102, 103, and 104. All items were uniformly
distributed over these categories. The second classification consisted of 4
categories labelled as 201, 202, 203, and 204. These categories were filled
with approximately 250, 125, 85 and 40 items, respectively. The third clas-

3.3 Genetic Algorithms 53

sification contained categories labelled as 301, ..., 310, which contained
approximately equal numbers of items.
The simplest test assembly problem, Problem 1, had one restriction re-

lated to the target test di culty P ` = 0.6
P

i ixiP
i xi

and one resource
restriction

P
i xi 40. Problem 2 was an extension of Problem 1 with 16

content restrictions were added. From each combination of two categories,
the first from the range 101, ..., 104, and the second from the range 201, ...,
204, a minimum of two items and a maximum of three items were required
in the test. Problem 3 had 40 content restrictions. From each combination
of two categories, the first from the range 201, ..., 204, and the second
from the range 301, ..., 310, exactly one item was required in the test.
Six variable penalty schemes were investigated. Three iteration cycles

with = 10 (fast), = 20 (moderate), and = 40 (slow) were combined
with two adaptation schemes with = 0.11, = 0.08 (high), and =
0.03, = 0.02 (low). The algorithm was stopped after 4000 iterations for
Problem 1, 8000 iterations for Problem 2, and 32000 iterations for Problem
3. Each condition was repeated 400 times. In Table 3.2, the best feasible

TABLE 3.2. Best and Iteration when Found for Di erent Penalty Schemes

Found at Iteration
Penalty Scheme M SD M SD

Problem 1
Fast/Low 0.8492 400 130
Moderate/Low 0.8492 450 220
Slow/Low 0.8492 420 190
Fast/High 0.8492 250 90
Moderate/High 0.8492 330 90
Slow/High 0.8492 410 140

Problem 2
Fast/Low 0.8316 0.0007 3500 2200
Moderate/Low. 0.8317 0.0006 3500 2100
Slow/Low 0.8316 0.0007 3800 2000
Fast/High 0.8316 0.0007 3300 2300
Moderate/High 0.8316 0.0006 3100 2300
Slow/High 0.8317 0.0006 3200 2200

Problem 3
Fast/Low 0.8017 0.0028 21700 7700
Moderate/Low 0.8021 0.0027 21400 7600
Slow/Low 0.8025 0.0024 21100 7600
Fast/High 0.8009 0.0035 22700 6900
Moderate/High 0.8011 0.0035 21300 8100
Slow/High 0.8018 0.0028 21900 7600

54 3. An Approximation of Cronbach’s and its Use in Test Assembly

solutions are reported as well as the iterations at which they were found.
Note that feasible solutions were found in all replications.
In Table 3.2 it can be seen that, for example, for the fast and low adap-

tation scheme applied on Problem 3, an average of 0.8017 was found in
an average of 21700 iterations. The conclusion can be drawn that the more
complex the problem in terms of the number of restrictions, the better a
low and slow adaptation scheme seemed to perform. As the number of it-
erations that were needed tended to grow with the complexity, the low and
slow scheme could be selected in all cases without great loss of e ciency
for the less complex problems.
In the second phase the question was if the stopping rule could be im-

proved. Two stopping rules, both based on the number of items and the
number of restrictions in the problems, were investigated. A faster rule was
to stop after LK iterations, where L is the number of items in the pool and
K the total number of restrictions in the problem. The second rule, a slower
one that generally gives better solutions, was to stop after LK log(LK) it-
erations. A slow and low penalty adaptation scheme was used for these
simulations.
Before conducting the simulations, the problems were formulated for

MINTO (Murtagh, 1988), a commercially available package for integer non-
linear programming. As with genetic algorithms, MINTO does not give
the optimal solution, but similarly to genetic algorithms presents the best
solution it has found. It does give, however, an upper bound on . As
the performance of MINTO vastly improves by adding problem specific
knowledge, some experiments were performed with sequentially adding the
restrictions to the problem, and the lowest upper bound found in these
experiments was presented as the upper bound.

TABLE 3.3. Best and Iteration when Found for Di erent Stopping Rules and
Deviation from Upper Bound

Reported
Rule Iterations M SD Upper Bound Deviation

Problem 1
LK 1000 0.8492 0.8492
LK log(LK) 6908 0.8492

Problem 2
LK 9000 0.8318 0.0005 0.8321 0.2%
LK log(LK) 81945 0.8321 0.0002 < 0.1%

Problem 3
LK 21000 0.8030 0.0022 0.8057 1.7%
LK log(LK) 208998 0.8054 0.0005 0.2%

3.4 Comparison of CMAX and Model II 55

In all 400 replications for the three problems, both stopping rules found
a feasible solution. In Table 3.3, the average and standard deviation of the
of the best feasible solutions, taken over the repetitions, are reported as

well as the upper bounds on according to MINTO, and the deviations
in terms of extra items needed to extend the test in order to reach the
upper bound on , according to the Spearman-Brown formula for test
lengthening.
If the criterion is to stop as soon as a solution is found within a 2%-

bandwidth from the upper bound, the first stopping rule will generally be
su cient. But note that the criterion can only be validated by external
means such as MINTO. Within the genetic algorithm an upper bound is
not known.

3.4 Comparison of CMAX and Model II

With the simulated item pool described above, the CMAX model and
Model II of Adema and van der Linden were compared in order to in-
vestigate whether the models give di erent solutions. For this purpose,
Problems 1 and 3 were adapted for both test assembly models. Problem 1
for CMAX, combined with the LK log(LK)-stopping rule, was compared
to the adapted Problem 1 for Model II. Furthermore, Model II was slightly
modified to accommodate the use of di instead of rit. Objective (3.7) was
replaced by

maximise
X
i

dixi. (3.12)

Both models found a feasible test designated as the best one, and for these
two tests, new response datasets for the simulated population were gener-
ated and analysed. The Problem 1 for CMAX and Problem 1 for Model II

TABLE 3.4. Comparison of Model II and the CMAX Model

Model
P
di Deviation

Problem 1
Model II 13.95 0.8492 0.8509 1.3%
CMAX 13.95 0.8492 0.8509 1.3%

Problem 3
Model II 12.03 0.8034 0.8051 1.1%
CMAX 12.00 0.8057 0.8072 1.0%

have the same optimum. After analysis of the new response data for this
optimal test, Cronbach’s was observed to be 0.8509, while was 0.8492,
a slight underestimation of 1.3%, in the order of magnitude of half an item

56 3. An Approximation of Cronbach’s and its Use in Test Assembly

di erence in test length. For Problem 3, the same procedure was followed.
CMAX and Model II have di erent optimal solutions in the case of Prob-
lem 3. The CMAX optimum has an is approximately 1.5% better than
the Model II optimum according to the Spearman-Brown formula.
For these solutions too, new response datasets were generated and an-

alysed. As with Problem 1, was smaller than the observed . In first
instance this might suggest that is a lower bound on Cronbach’s , and
therefore on the test reliability, but no evidence for such a claim can be
found. But nonetheless, di erences are relatively small, so that a new test
assembly model becomes feasible.

3.5 CMIN Model

The CMIN model (3.13) expresses the wish to assemble a test that has a
minimal use of resources, given a threshold reliability T , a target di culty
range, a set of resource restrictions, content balancing, and interitem rela-
tions. It can be applied in situations that require a test with a reliability
at least as high as the target T , to be assembled against minimal cost,
expressed by, for example, test length. It is formulated as

minimise
X
i

qi0xi (3.13)

subject to: T

P `

P
i

ixiP
i
xi

Pu

X
i

qinxi Qn n

C`m
X
i

cimxi Cum m

pr (x) = 1 r

xi {0, 1} i.

Note that as is not a lower bound on , the observed need not be
larger than T .
As with the fitness function of the genetic algorithms used to solve the

CMAX problems, the fitness function for the CMIN model is based on the
objective and a penalty function to accommodate the threshold restriction,
the di culty restrictions, content balancing, and interitem relations:

3.5 CMIN Model 57

f(x) =

μ
1

1 +
P
i qi0xi

¶μ
1

1 + g(x)

¶
(3.14)

g(x) = h (T) + h

μ
P `

P
i ixiP
i xi

¶
+ h

μP
i ixiP
i xi

Pu
¶

+
X
n

h
³
Qn

X
i
qinxi

´
+ μ

X
m

h
³
C`m

X
i
cimxi

´
+ μ

X
m

h
³X

i
cimxi Cum

´
+

X
r

1 pr (x) .

Especially when using the test length as the objective, there are many
solutions with equal objective function values. Since all feasible solutions
with the same objective function value will have the same fitness, epistasis
is the result. Epistasis is described as the situation in which some genes
have no direct influence on the fitness. If the population evolves towards
a situation in which many solutions have the same fitness, the GA cannot
make a distinction between these solutions. The result may be that the
evolution will stagnate because of lack of a search direction. An obvious
way to reduce the epistasis is to allow small di erences in fitness so that
every solution has a unique fitness. But these di erences should not be
assigned randomly to the solutions, they should have a meaningful value
in order to accelerate the optimisation process instead.
It is easy to see that, given two feasible tests, it is easier to retain feasi-

bility while removing an item from the test with the highest than from
the test with the lowest . Therefore, a reward could be assigned to
each solution for each surplus unit of , and the fitness function in (3.14)
could be replaced by

f(x) =

μ
1

1 +
P
i qi0xi

¶μ
1 + h(T)

1 + g(x)

¶
. (3.15)

The reward, however, should not be too high. If it is high, adding an item
compensates for the increase in objective function value and loss in fitness.
In that case, the optimum of the fitness function does not coincide with
the optimum of the objective function. If the removal of an item results in
a feasible solution, it must always be more profitable than the reward for
the surplus of reliability caused by keeping the item in the test.

58 3. An Approximation of Cronbach’s and its Use in Test Assembly

3.5.1 Simulations

In order to investigate the CMIN model, simulations were conducted. Three
problems were simulated using the same item pool as for the CMAX prob-
lems: Problems 4, 5, and 6, respectively. Problem 4 had one restriction on
the threshold reliability: T = 0.83, and one restriction on the target test
di culty: P ` = 0.6

P
i ixiP
i xi

. For Problem 5, two sets of classification
restrictions were defined. The maximum percentage of items in categories
201, ..., 204 was 55, 30, 20, and 10, while for categories 301, ..., 310 the max-
imum percentages were 20. Problem 6 had 40 content restrictions, similar
to Problem 3. From each combination of two categories, the first from the
range 201, ..., 204, and the second from the range 301, ..., 310, a maximum
of one item was required in the test. At the same time, the threshold T

was lowered to 0.80 as a test of 0.83 appeared not to be feasible in
combination with these content restrictions. Note that for Problem 5, the
classification restrictions in the CMIN model needed a small modification
in order to accommodate percentages of test length instead of numbers of
items:

C`m

P
i cimxiP
i xi

Cum m. (3.16)

Two fixed stopping rules were applied, the first rule stopped after LK
iterations and the second rule after LK log(LK) iterations. Furthermore,
a slow and low adaptation scheme with = 40, = 0.03 and = 0.02 was
used.

TABLE 3.5. Best Solutions for the CMIN Models

Rule Iterations Fitness 100 Test Length
Problem 4

LK 1000 0.8306 3.4404 28.07
LK log(LK) 6908 0.8303 3.4484 28

Problem 5
LK 9000 0.8309 3.3336 29

LK log(LK) 81945 0.8309 3.3336 29

Problem 6
LK 21000 0.8020 4.0008 24
LK log(LK) 208998 0.8020 4.0008 24

Only for Problem 4 and the fast stopping rule, the optimal test length
of 28 items was occasionally not found and a test of length 29 was assem-
bled. In all other cases the optimal test lengths were found, since MINTO
confirmed the test lengths of 28, 29, and 24 items, were optimal indeed.

3.6 Conclusions 59

3.6 Conclusions

While Cronbach’s is an important and easy to understand concept, it
cannot be evaluated during test assembly. Current test assembly models
do not attempt to evaluate , although they try to optimise it indirectly.
This circumvention leads necessarily to suboptimal solutions.
This paper introduces an approximation of , , that can be evalu-

ated during test assembly. An assumption of a unidimensional item pool,
in terms of a one-factor model, is needed. However, this is often an implica-
tion of building item pools based on classical test theory. As the resulting
test assembly model, CMAX, is nonlinear, genetic algorithms are used. Sim-
ulations for three various problems show that, in general, solutions within
a 2%-bandwidth from upper bounds could be found.
Comparison of the CMAX model with Adema and van der Linden’s

Model II shows the benefit of this approach. A second advantage of is
that a new test assembly model becomes available: the CMIN model min-
imises the resources needed for the test given a minimum . The CMIN
model finds its justification in those situations in which circumstances dic-
tate the assembly of a test with a specific internal consistency, or higher.

60 3. An Approximation of Cronbach’s and its Use in Test Assembly

4
Automated Assembly of Testsets: Fit
in all Seasons

4.1 Introduction

Since Theunissen (1985) showed how to apply mathematical programming
methods in test assembly by formulating a target test information defined
at a number of discrete ability points, this topic has gained both theoreti-
cal as well as practical attention. Testing agencies try to reduce costs when
producing their test forms by constructing item banks, from which items
are selected. Usually, no single test forms are produced from item banks,
but testsets, consisting of various test forms designed for several purposes.
A model for the assembly of parallel test forms, in the sense that test char-
acteristics such as test information function (TIF) are identical, is reported
by Boekkooi-Timminga (1990). A related paper on a heuristic approach is
Ackerman (1989), while Armstrong, Jones and Wu (1992) concentrated on
the assembly of tests similar to an existing seed test using a network flow
model. Sanders and Verschoor (1998) took a somewhat di erent approach
by using a greedy heuristic to minimise the distance between the item pa-
rameters in the di erent test forms.

4.2 Test Assembly in Item Response Theory

A key notion in item response theory (IRT) is that of a latent scale on
which both the item di culties and the test takers’ abilities are defined.
An IRT model defines the probability on an item score obtained by test

62 4. Automated Assembly of Testsets: Fit in all Seasons

takers as a function of the latent ability. A widely used IRT model is the
two parameter logistic (2PL) model for dichotomous items, with score 0 for
a wrong answer and 1 for a correct answer. The 2PL model assumes the
probability on a correct answer for item i and a candidate with ability
to be

P (Xi = 1|) = exp(ai(bi))

1 + exp(ai(bi))
(4.1)

where ai is referred to as the discrimination parameter and bi as the dif-
ficulty parameter of item i. A usual way to build item banks from which
tests are assembled, consists of two phases. First, items are constructed and,
through pretests, data are gathered to estimate the item parameters. In the
next phase, the items are selected for the tests while the item parameters
are considered to be known without any error. Purpose of this selection is
the assembly of a set of tests with minimal error of measurement, against
minimal e ort as expressed in, for example, test length.
A statistical property of an item is Fisher information, also called the

item information function, which for the 2PL model (Hambleton and Swami-
nathan, 1985) is given by

Ii () =
a2i exp(ai(bi))

(1 + exp(ai(bi)))2
. (4.2)

The variance of the ability estimator b is asymptotically equal to the inverse
of the TIF value evaluated at . Under the assumption of local indepen-
dence between item scores, the TIF is the sum of the information functions
of the items in the test:

I() =
X
i

Ii () . (4.3)

As a general aim of tests is to measure candidates abilities as accurately as
possible, the variance of b should be minimised and, hence, the TIF should
be maximised. Note that not only the TIF has a relation with the error of
measurement, also the di culties of the items has a relation with the TIF.
As the item information function reaches its maximum at = bi, the joint
di culties of the items control the shape of the TIF.
Models for parallel test assembly can be described in a rather straightfor-

ward way: Assuming an item pool of size L, assemble J tests with the same
test characteristics but with no items in common. Boekkooi-Timminga
(1990) was the first to formulate such a model, using decision variables
xij to indicate whether item i is selected for test j. The model formulated
by van der Linden and Adema (1998), which allowed other restrictions in
their model as well, is the basis of the PARIMAX model formulated below.
Let variables xij denote the decision variables indicating whether an item
is selected in test j or not. Iik is the item information in ability point k,
while Tkj is defined as the target information for test j at this point. Note

4.2 Test Assembly in Item Response Theory 63

that formulating the TIF target for each test separately gives the possibil-
ity to specify di erent characteristics for each test. Coe cients qin are the
resource parameters of item i, indicating how many resources are needed to
use it in the test, cim the classification parameters having value 1 if item i
belongs to category m and 0 otherwise. Qnj , C`mj and C

u
mj are the desired

use of resources and number of items in the classification categories for test
j, respectively:

maximise y (4.4)

subject to: y

P
i
Iikxij

Tkj
k, j (4.5)X

i

qinxij Qnj n, j (4.6)

C`mj
X
i

cimxij Cumj m, j (4.7)

pr (x) = 1 r, j (4.8)X
j

xij 1 i (4.9)

xij =

½
1, item i in test j
0, else

i, j. (4.10)

The PARIMAX model formulated in (4.4) - (4.10) expresses the wish of
the test assembler to produce a series of tests that maximise the TIF at
selected ability levels, given desired shapes in the TIF targets in (4.5), and
subject to various restrictions. The restrictions in (4.6) put a limit on the
use of certain resources. As can be derived from the additivity of the item
information functions, the easiest way to maximise the TIF is to use all
items in the pool. So, the resource restrictions in (4.6) limit the resources
that the tests use, for example, test length or the total time allotted for
test taking. In addition, the restrictions in (4.7) define a desired taxonomic
makeup of the tests. Items are classified, for example, with respect to con-
tent domains or behavioural aspects. For all these categories minima and
maxima are specified. A third group of restrictions in (4.8) concerns the
item level. When building large item pools, it is almost inevitable that
some items form a relation with others. These relations are referred to as
interitem relations. Common examples of these item level relations are en-
emy sets and testlets. In enemy sets, one item may give away a clue to
the answer on the other items, clearly an unwanted situation. Testlets are
structures within the item pool that contain several items that should stay
together. An example of a testlet is a reading passage with a group of test
questions. Theunissen (1996) has shown that more complex relations exist
frequently. These can be formulated as well, using Boolean operators ,
and ¬. These relations can be transformed into restrictions based on dif-

64 4. Automated Assembly of Testsets: Fit in all Seasons

ferential payo functions, denoted by pr (x), as proposed by De Jong and
Spears (1989). A last group of restrictions in (4.9) is added in order to
stipulate the requirement of non-overlap, that is, an item is allowed to be
used in no more than one test.
The purpose of the model is to maximise the information in the tests

at those ability points for which the ratio between the TIF and its target
is minimal. Thus, the total information of each test is maximised while
adhering to the preferred TIF shapes as much as possible.
These models can be large for programs such as the NIVOR testing pro-

gram for Dutch as a Second Language, produced by Cito (de Jong, 1998).
For each of the four language skills Reading, Writing, Listening and Speak-
ing comprehension, testsets had to be developed for four levels of mastery.
The first test was a placement test to assign an incoming learner to a course
level. Then the progress of the learners was monitored during the courses
by a number of tests. Finally, a certification test concluded the various
courses. The placement tests were relatively short and had a broad and flat
TIF in order to determine the appropriate course level. The monitoring
tests had increasing di culty to reflect the growing proficiency during the
courses. These were short tests with narrow TIFs. The certification tests
aimed at deciding whether the candidate had passed or failed the appro-
priate mastery level as accurately as possible. For this purpose, for each
skill and each level an item bank was built with sizes ranging from 400 to
600 items, from which the tests were assembled. In those cases, standard
integer linear programming techniques should be applied carefully.
In order to control calculation times, Armstrong (1992) proposed a heuris-

tic for the assembly of parallel test forms. As a first step, a group of items
is selected into a seeding test. In practical situations, this might be an
existing test. Thereafter, parallel forms are created by minimising the dis-
tance between the item parameters of the new forms and the parameters
of the seed test. The problem is modelled as a network flow problem. This
approach, however, might impose rather strict demands on the item bank
from which the items are drawn: Numerous items must be present, identical
both in classification as well as in psychometric parameters. A more flexible
approach in which items are selected in such a way that their parameters
do not have to be identical, but in which the overall test characteristics are,
would be welcome. Moreover, incorporation of other types of restrictions
is generally not possible with network flow models. On the other hand,
Verschoor (2004) has shown that genetic algorithms (GAs) can be applied
successfully to test assembly problems while still retaining a large degree
of flexibility.
The mapping between decision variables xij and the chromosomes in a

GA is straightforward: Each variable forms a gene with alphabet {0, 1}.
Furthermore, Verschoor (2004) has found that a population of 100 indi-
viduals, mate selection proportional to fitness, uniform crossover, and a
survival scheme in which the best unique individuals survive, is an e cient

4.2 Test Assembly in Item Response Theory 65

combination to solve the class of test assembly models. The fitness function
is comprised of the objective function and a penalty function related to the
restrictions, in such a way that only positive values are possible:

f(x) =
y

1 + g(x)
=

min
k,j

nP
i Iikxij
Tkj

o
1 + g(x)

(4.11)

g(x) =
X
n,j

h
³X

i
qinxij Qnj

´
+ μ

X
m,j

h
³
C`mj

X
i
cimxij

´
+ μ

X
m,j

h
³X

i
cimxij Cumj

´
+

X
r,j

1 pr (x) +
X
i

h
³X

j
xij 1

´

h(u) =

½
u, u > 0
0, u 0

.

Coe cients , μ, and denote the penalty multipliers that are deter-
mined dynamically similar to the strategy of Siedlecki and Sklanski (1989).
Consider for consecutive iterations the individuals with the highest fit-
ness. If for all these individuals all resource restrictions are met, multiply
by 1 . If for all individuals some resource restrictions are violated,

multiply by 1+ . Leave unchanged in all other cases, that is, that for
some individuals all resource restrictions are met while for other individu-
als there are violated restrictions. The same rule is followed for the other
penalty multipliers μ, and .
Variations to the PARIMAX model can easily be formulated in cases, for

example, where a limited overlap is allowed. Define test overlap Vjl as the
maximum number of items to be included simultaneously in tests j and l.
Next to the test overlap, the item exposure must be controlled to prevent
items from appearing in too many tests. DefineWi as the maximum number
of tests that item i is allowed to appear in. Replace the restrictions in (4.9)
by

X
i

xijxil Vjl j, l (4.12)X
j

xij Wi i. (4.13)

66 4. Automated Assembly of Testsets: Fit in all Seasons

Penalty function g(x) is modified in order to reflect the incorporation of
the overlap and exposure restrictions. Note that the restrictions in (4.12)
are nonlinear, but can be linearised by the introduction of a dummy variable
zijl for each combination of item i and pair of test forms j and l, and related
restrictions:

X
i

zijl Vjl j, l (4.14)

zijl xij + xil 1 i, j, l. (4.15)

This, however, would result in the growth of the complexity of the model
to such an extent that for sizeable item pools it is questionable that prob-
lems based on this linearisation can be solved within reasonable time limits.

4.3 Compact Coding

As can be seen above, using the conventional model formulations implies
the introduction of many variables as well as restrictions on overlap control.
This causes a significant increase in problem size compared to single test as-
sembly. Various approaches have been studied in other fields to investigate
the e ciency of alternative representations (Hornsby and Pollack, 2001;
Rothlauf and Goldberg, 2003; Toussaint, 2005), leaving no firm conclusion
whether alternative representations improve the performance. If certain re-
strictions are made redundant, the performance might be improved.
If no overlap between the tests should be allowed at all, there is an

alternative problem formulation that uses a special representation scheme
for the chromosomes. Define a coding scheme that maps gene xi to the test
assembly model:

xi =

0, if item i is not selected
1, if item i is selected in test 1
2, if item i is selected in test 2
3, etc.

.

Now, the chromosome length is equal to the size of the item pool, one
gene mapping onto a single item and vice versa, while a mapping directly
based on the decision variables xij would cause the chromosome length to
be the number of items times the number of test forms to be assembled.
On the other hand, the alphabet should accommodate all possible decisions
regarding an item: values 1, ..., J to designate the test form for which
the item is selected, or 0 in case the item is not selected at all. In this
way, overlap is not possible and the corresponding restrictions in (4.9) are
redundant. The other restrictions in (4.4) - (4.8) remain unchanged.

4.4 Epistasis 67

Even though it may be expected that a GA based on compact coding
would consume considerably more time than for a similar single test as-
sembly problem using a comparably large item pool, compact coding might
deliver results faster than traditional coding. Especially in the early phase
of the optimisation process, compact coding might have a distinct advan-
tage over traditional coding as the majority of restrictions have become
redundant.

4.4 Epistasis

Since the fitness is based upon y, and thus on the combination of k and
test j for which y is minimal, it will be no surprise that the fitness function
is epistatic if no precautions are taken. All feasible solutions that have the
same minimum test in common have the same fitness. The individual with
the highest fitness, and thus with the highest minimum test, will have the
greatest probability to procreate and to survive. Within a few iterations
all individuals will be based upon the same minimum test having only
di erences in the other tests. From that iteration on, all individuals have
the same fitness. With all di erences located in the non-minimum tests,
a search direction for improvement has been lost, and the population has
converged to a local maximum.
An obvious way to reduce the epistasis is to allow small di erences in

fitness. This way, every solution will have a unique fitness and the search
direction will be restored. These di erences should have some meaningful
value in order to propagate the optimisation process.
Consider two di erent feasible solutions with equal fitness. These two

candidate testsets share the same minimum test, while di erences are lo-
cated in (at least one of) the non-minimum tests. It is easy to see that,
given these two testsets, it is easier to improve the minimum test, and
hence the fitness, and retain feasibility by an item migrating from a high
non-minimum test to the minimum test than by migrating from a low non-
minimum test. Even if there is no direct reason to do so, the fitness function
should be based on at least one non-minimum test in order to favour higher
non-minimum tests.
Two strategies can be considered to overcome the epistasis:

• The use of a reward scheme that involves the non-minimum tests in
the fitness. For the PARIMAX model, this reward scheme could be
devised as

f(x) =
y +

P
j yj

1 + g(x)

68 4. Automated Assembly of Testsets: Fit in all Seasons

whereby restrictions in (4.5) are replaced by

y yj j

yj

P
i
Iikxij

Tkj
k, j.

Solutions that have high non-minimum tests will get a higher reward
than those with relatively low non-minimum tests. The purpose of a
reward scheme is to favour those individuals that have a higher chance
to produce o spring with more favourable objective function values.
When the non-minimum tests have a high TIF, it will be easier for
crossover and mutation to establish an exchange of items so that the
minimum test is improved, than when the non-minimum tests have
a low TIF. The reward, however, should be chosen carefully. A small
increase in the TIF of the minimum test, and therefore in objective,
should be more profitable than an increase in TIF of the non-minimal
tests.

• The use of several alternating fitness functions in successive itera-
tions. A cycle of iterations is formed in which all fitness functions are
evaluated sequentially. If the cycle is very short, only individuals that
do well according to all fitness functions will survive. This approach
can be regarded as the introduction of seasons, analogous to seasons
in biology. Individuals that do well in all seasons have a larger chance
of survival than individuals that thrive in one season but encounter
problems in the other. For multiple test assembly, a cycle of two sea-
sons can be used. In the odd iterations, the original fitness function
as described in (4.11) is evaluated while in the even iterations a fit-
ness function is evaluated that also takes the non-minimum tests into
account. Define this alternative fitness as

f (x) =

P
j yj

1 + g(x)
.

In e ect, individuals that have a high TIF for the minimum test
as well have a high information function for the other tests will be
favoured. This approach has the advantage of being more robust than
the reward scheme, since too high a reward could interfere with the
optimisation process. The disadvantage, however, is that in half of
the iterations a fitness function is evaluated that has only an indi-
rect bearing on the objective function. Therefore, the process might
slow down somewhat and more iterations are needed to reach good
solutions.

4.5 Simulations 69

4.5 Simulations

Simulations have been conducted in order to investigate the e ectiveness of
the various approaches in preventing epistasis and solving the test assembly
problems. Two questions have to be answered: What strategy is most e ec-
tive in solving test assembly problems: reward, seasons, or a combination
thereof? Second, does compact coding accelerate the optimisation process
in case of non-overlap?
To answer these questions, three di erent test assembly problems were

used. All three problems were based upon an item pool consisting of 500
items with simulated parameters according to the two-parameter model
with log() N(0, 0.4) and N(0, 1). All items were classified on two
di erent dimensions. The first dimension consisted of 4 categories labelled
as 101, 102, 103 and 104. These categories were filled with approximately
250, 125, 85 and 40 items, respectively. The second dimension contained
categories labelled as 201, ..., 210, which contained approximately equal
numbers of items.
The simplest test assembly problem, Problem 1, involved the assembly

of two parallel tests. For each test, four restrictions on the shape of the
TIF (1 = 1.5, 2 = 0.5, 3 = 0.5, 4 = 1.5 with T

1
= 4, T

2
= 8,

T 3
= 8, T

4
= 4) and one resource restriction,

P
i xij 40, were defined.

No content restrictions based on the classification structure described above
were used and item overlap was not allowed. Problem 2 was an extension
of Problem 1, in that it involved assembly of three parallel tests with a
similar TIF as in Problem 1 with zero overlap. All tests had 40 classification
restrictions. From each combination of two categories, the first from the
range 101, ..., 104, and the second from the range 201, ..., 210, exactly one
item was required.
Furthermore, the two coding schemes were combined with the four com-

binations of epistasis prevention strategies, resulting in eight di erent con-
ditions. The optimisation process was stopped after LK log(LK) iterations,
where L is the number of decision variables, and K is the total number of
restrictions, excluding the overlap restrictions. Verschoor (2004) has shown
that in general for test assembly models this stopping criterion gives sat-
isfactory solutions. Thus, Problem 1 was stopped after 92103 iterations
while Problem 2 was stopped after 750592 iterations, after which the best
solution found so far was presented. For Problem 1, 400 replications were
performed. For Problem 2, this number was 200. In the dynamic penalty
adaptation scheme, was chosen to be 80, while was set equal to 0.03,
to 0.02, while reward was equal to 0.0001.
The average best fitnesses and their standard deviations are presented in

Table 4.1. As all strategies gave feasible solutions in all replications and all
fitnesses were based on feasible solutions, it follows that f(x)T k is a lower
bound on the TIFs of solution x realised at k. Therefore, 1

f(x)T
k

is an

70 4. Automated Assembly of Testsets: Fit in all Seasons

TABLE 4.1. Best Fitness Function Values

Best Fitness
Problem 1 Problem 2

Strategy M SD M SD
None-Binary 3.911 0.025 3.105 0.038
None-Compact 3.836 0.050 3.022 0.072
Reward-Binary 3.919 0.018 3.101 0.037
Reward-Compact 3.844 0.054 3.016 0.085
Seasons-Binary 3.914 0.017 3.101 0.022
Seasons-Compact 3.902 0.011 3.123 0.029

Both-Binary 3.869 0.029 3.101 0.021
Both-Compact 3.899 0.011 3.122 0.023

upper bound on the standard error of measurement at k. Note that this
argument does not hold for the strategies involving a reward: In the best
solutions on which the data in Table 4.1 are based, a total reward in the
order of magnitude of 0.001 0.002 was observed, and this reward should
be subtracted from the fitness before estimations of the TIFs can be made.
Furthermore, it can be seen that there is no strategy that is clearly

best overall. For Problem 1, a relatively small problem, compact coding
o ered no advantages over binary coding. For Problem 2, a larger problem,
compact coding performed better in combination with either the seasons
approach or with both seasons and reward scheme.

4.5 Simulations 71

Binary Coding

1.5

2

2.5

3

3.5

4

100 1000 10000 100000

Iteration

Fi
tn

es
s

None
Reward
Seasons
Both

Compact Coding

3.4

3.5

3.6

3.7

3.8

3.9

4

100 1000 10000 100000

Iteration

Fi
tn

es
s

None
Reward
Seasons
Both

FIGURE 4.1. Average Best Fitness during Optimisation after Reaching
Feasibility (Problem 1)

Figure 4.1 shows the average fitness of the best solution during the it-
erations. It can be seen that compact coding gave good solutions much
faster than binary coding. While in Problem 1 all strategies yielded fea-
sible solutions within 500 iterations, the average fitness for the strategies
that involved seasons was over 3.8. For binary coding, these fitness values
were reached after 16000 iterations.
Note that for compact coding the performance of the seasons approach

coincided almost entirely with the combination of both approaches. Ap-
parently, adding a reward scheme to the seasons approach had no e ect
for compact coding. It is interesting to see that this was di erent for bi-
nary coding. In the first 10000 iterations, the combination performed better
than either single approach, after which the other strategies caught up and
eventually performed somewhat better.

72 4. Automated Assembly of Testsets: Fit in all Seasons

Binary Coding

2.65

2.7

2.75

2.8

2.85

2.9
2.95

3

3.05

3.1

3.15

1000 10000 100000 1000000

Iteration

Fi
tn

es
s

None
Reward
Seasons
Both

Compact Coding

2.65

2.7

2.75

2.8

2.85

2.9
2.95

3

3.05

3.1

3.15

1000 10000 100000 1000000

Iteration

Fi
tn

es
s

None
Reward
Seasons
Both

FIGURE 4.2. Average Best Fitness during Optimisation after Reaching
Feasibility (Problem 2)

Figure 4.2 shows that for Problem 2 the di erence between binary coding
and compact coding was even larger than for Problem 1. The GA with com-
pact coding found feasible solutions within 2000 iterations for the strategies
involving seasons, but it lasted 32000 iterations before all replications of the
binary coding with seasons found a feasible solution, and it took 64000 it-
erations without seasons. From that point, however, the best fitnesses that
were found for the seasons approach were of the same order of magnitude
as those for the compact coding scheme. For the approach without seasons,
binary coding produced slightly better solutions than compact coding at
this stage. Note that for Problem 2, the results for the seasons approach
coincided almost fully with those for the combination of approaches. This
could be observed not only for compact coding, as with Problem 1, but also
for binary coding. Even more, also the performance for using no scheme
coincided with the reward scheme in case of binary coding. In case of com-

4.5 Simulations 73

pact coding, the reward scheme performed even slightly worse than using
no scheme at all.

4.5.1 A Testset with Overlap

The third problem in the simulation studies concerned the assembly of
three tests with di erent characteristics, similar to the case of the moni-
toring tests in the NIVOR testing program. All three tests had length 40
and were subjected to the same content restrictions: Category 101 had to
be represented by 15 items, category 102 and 103 by 10 items each, and
category 104 by 5 items. The tests had an increasing di culty in order to
represent a growth in ability level over the test administrations. For each
test, a TIF target was defined at three ability points with T 1 = 8, T 2 = 8,
T 3 = 4, while the ability points varied for each test. For test 1 these were:
1 = 1.5, 2 = 0.5, and 3 = 0.5; for test 2: 1 = 1.0, 2 = 0, and
3 = 1.0, and for test 3: 1 = 0.5, 2 = 0.5, and 3 = 1.5. The test over-
lap was restricted to a maximum of four items and each item was allowed
to appear in at maximum two tests.
Since Problem 3 allowed for overlap between the tests, compact notation

could not be used. Thus, four epistasis prevention strategies were simu-
lated: the reward scheme, the seasons approach, both, and using no strat-
egy. Similar to Problem 1 and Problem 2, the optimisation process was
stopped after LK log(LK) iterations, where L is the number of decision
variables, and K is the total number of restrictions, excluding the overlap
restrictions. Problem 3 was stopped after 588424 iterations, after which the
best solution found so far was reported. For each strategy, 200 replications
were performed. In the dynamic penalty adaptation scheme, was chosen
to be 80 while was 0.03 and was 0.02.
The average best fitnesses and their standard deviations are presented

in Table 4.2.

TABLE 4.2. Best Fitness Function Values for Problem 3

Best Fitness
Strategy M SD
None-Binary 4.413 0.106
Reward-Binary 4.449 0.116
Seasons-Binary 4.495 0.032
Both-Binary 4.482 0.045

From Figure 4.3 it can be seen that the strategies did not di er very much
in e ectiveness. The strategies involving seasons performed somewhat worse
during the first 10000 iterations, after which they performed somewhat
better than the strategies without seasons.

74 4. Automated Assembly of Testsets: Fit in all Seasons

Binary Coding

3.5

3.6
3.7

3.8
3.9

4

4.1
4.2

4.3
4.4

4.5

100 1000 10000 100000 1000000

Iteration

Fi
tn

es
s

None
Reward
Seasons
Both

FIGURE 4.3. Average Best Fitness during Optimisation after Reaching
Feasibility (Problem 3)

The question which strategy prevents epistasis best for the assembly of
testsets cannot be answered simply. If the optimisation is stopped after
a relatively large number of iterations, as was the case in our simulation
study, using a reward scheme seems to be the best choice for relatively
simple models like Problem 1. For more complicated models, such as Prob-
lem 2, compact coding combined with either the seasons approach or both
seasons and reward schemes, seemed to be the favourable choice. In cases
where overlap restrictions do not allow the use of compact coding, such as
in Problem 3, the seasons approach seemed to perform best.
From a practical point of view, however, the stopping criteria seemed

to be rather strict, and it might be preferrable to give a reasonably good
solution at an earlier moment. When the optimisation is stopped at an
earlier moment, compact coding combined with seasons or with both the
seasons and reward schemes seemed to be the best choice.

4.6 Conclusions

A model for the assembly of testsets was proposed in this study. The idea
behind the model is the observation that in some testing programs, sets
of test forms are developed all originating from a common item pool, and
where a limited amount of overlap is allowed. The test specifications may
vary between test forms, as each may serve a di erent purpose within the
testing program. It is shown that a genetic algorithm is capable of solving
these models e ciently. Especially if a limited overlap is allowed, the result-
ing test assembly models are either nonlinear or need many extra dummy

4.6 Conclusions 75

variables and restrictions, which may cause algorithms traditionally used
in the field, based upon integer linear programming, to fail.
Should no overlap between tests be allowed, a compact coding using a

more elaborate alphabet improves the performance significantly, especially
when combined with an approach that mimics seasons, evaluating di erent
fitness functions in consecutive iterations. Compact coding is an e ective
method in preventing epistasis inherent to the model formulations of the
assembly of testsets.

76 4. Automated Assembly of Testsets: Fit in all Seasons

5
Preventing the Bankruptcy of an
Item Bank

5.1 Introduction

The popularity of computer based testing (CBT) and automated test as-
sembly (ATA) has created various opportunities for testing agencies to
improve the cost-e ectiveness of their “silverware” by intensifying the use
of test items over a prolonged period of time. For this improved use, test-
ing agencies have been investing considerable amounts of money into the
development of item banks. These investments are justified by the foreseen
extended use of the items in these banks. Therefore, it is not surprising that
attention has recently been paid to the problem of item bank management
to safeguard long-term item bank quality, and thus to maximise the return
on the investments that have been made.
Recent research by Way and Ste en (1998), Belov and Armstrong (2004)

and Ariel (2005) focused either on item bank design or on training and se-
lection of item writers to construct items with favourable characteristics. In
some testing programs, however, the possibilities to implement these mea-
sures might be limited, for example, by budget restrictions. Moreover, opti-
misation techniques, whether performed by hand or by using ATA models
and accompanying software, will select the most favourable items that are
available. Therefore, these methods put a pressure on the item construction
process to construct more items of even better quality than before. As test
assembly methods continue to select the best available items, improvement
of the quality of newly constructed items will not prevent this problem.
The quality of the tests might improve but depletion of high-quality items

78 5. Preventing the Bankruptcy of an Item Bank

in the item bank continues to occur. In fact, as ATA models are likely to
be more e cient in identifying favourable items than manual optimisation
techniques, this pressure on item construction tends only to increase when
ATA is introduced.
Therefore, in order to maintain a uniform quality of an item bank, test

assembly must be harnessed in such a way that the quality of the items used
in the tests does not exceed the expected quality of newly constructed items
or previously used items that are returned to the bank. Several strategies
to harness the assembly of tests are proposed in this paper and a simulation
study is conducted to evaluate these strategies in the context of two testing
programs for which item bank management is a vital issue: the Unified State
Examinations (USE) for secondary education in the Russian Federation,
and the State Examinations for Dutch as a Second Language (DSL) in the
Netherlands.

5.1.1 The Russian Unified State Examinations

Started in 2001, the USE program is gradually being introduced in the
Russian Federation. Nationwide, schools for secondary education are in the
process of adapting to the school leaving and university entrance examina-
tions in the program, providing their students with test results comparable
all over the country (Russian Federation Ministry of Education and Sci-
ence, 2005). The Federal Institute for Pedagogical Measurement (FIPI) de-
velops the examinations. Approximately 700,000 students have been tested
in 2006, and this number is likely to grow to over 1,500,000 annually as of
2012.
Since the Russian Federation extends over nine time zones, two issues are

important for the success of the USE program: test equivalence and item
security. It has been decided that 100 parallel test forms will be developed
yearly, while each form will be administered to roughly equal numbers
of students. A limited overlap between the test forms is acceptable in the
USE program. Currently the item banks contain approximately 3000 - 4000
items that have been calibrated under the OPLM model, that is, a 2PL
model with integer discrimination indices (Verhelst, 1995). The item banks
are planned to be expanded annually with 1000 calibrated items until the
target size of 10000 items has been reached.
The parameter distributions of the items in the current USE item banks

for Russian and Physics can both be approximated by log() N(1, 0.36)
and N(0, 0.28). Analysis of current data has shown that the ability of
the population is approximately normally distributed with μ = 0.01 and
= 0.23.

5.2 The Dynamics of Item Bank Management 79

5.1.2 Dutch as a Second Language Examinations

While the purpose of the USE testing program is to give an advise on pos-
sible further education for a relatively broad population, the tests of the
DSL program can be characterised best as certification tests. Each year,
approximately 5000 DSL-learners take an examination on either level 1 or 2
of four di erent language skills: Reading, Writing, Listening, and Speaking.
Cito has been commissioned to produce the Listening and Speaking exam-
inations three times a year. The test lengths for these examinations are 40
and 15 items, respectively. Starting in 2007, a new system of examinations
will be implemented, giving candidates higher flexibility in taking the ex-
aminations. For each skill and level combination, an item bank is developed
that should contain 1000 - 2000 items, from which six parallel examinations
will be assembled annually. In this case, the test forms should be parallel
according to Samejima (1977). Contrary to the USE testing program, no
overlap is allowed.
In order to assemble the examinations, ATA methods will be used. The

goal is to assemble shorter examinations, preferrably with no more than 30
- 35 items for Listening, while the TIFs will be required to be equal to those
of the current examinations. Every year approximately 100 new items will
be constructed, pretested, and added to the banks. In addition, items will
not be allowed to be used again within two years after administration. In
this way, the addition and reuse of items will compensate for the loss of
the items that will be used in the examinations or will become outdated.
The current item bank for Listening at level 1 contains 767 items, while

the parameter distribution can be approximated by log() N(1.5, 0.28)
and N(0.17, 0.24). As it was decided that the cut-o point on the
raw score scale was at 28 out of 40, while simultaneously it was defined
to be = 0.089 on the ability scale of a reference test, the majority of
the items are relatively easy in order to accommodate the combination of
cut-o points. At the same time, the distribution of the target population
was observed to be approximately normally distributed with μ = 0.12 and
= 0.28.

5.2 The Dynamics of Item Bank Management

It is assumed that the item bank can be split into two separate item pools:
an active item pool from which items may be selected, and a passive item
pool containing items that were previously used and for security reasons
should not be used again for a certain period of time. Then, the dynamics
involved in item bank management can be modelled as two processes that
interact between the two pools. The first process comprises of the construc-
tion and pretesting of new items, and, if applicable, of the return of items
to the active pool. The items from this process form the input of the active

80 5. Preventing the Bankruptcy of an Item Bank

pool. The second process is an output process. After items have been used
in a test, they are stored in the passive pool for possible future reuse. In
the remainder of this paper, the term item pool refers to the active item
pool, unless stated otherwise.

Active Item Pool Passive Item Pool

Returning Items

Using Items

Constructing Items

FIGURE 5.1. The Processes of Item Bank Management

Three distributions can be distinguished: the parameter distribution of
items from the input process, of those from the output process, and of those
in the item pool. Note that the last distribution depends on the other two.
It is clear that the parameter distribution in the input process must at

least match that of the output process to avoid depletion and to maintain
an item pool that can supply items according to the test specifications over
an extended period of time. Strategies for item bank management could be
said to be successful if they control the input and output processes such
that a stable pool is maintained.
As strategies to improve the input are expected to influence the quality

of the tests only, and not to prevent depletion of high-quality items, the
input distribution is assumed to be stable throughout this study. Therefore,
it su ces to regard either the quality of the tests or the distribution of the
items in the item pool to conclude whether an item bank management
strategy is successful or not.

5.3 Item Bank Depletion

Before we discuss strategies to prevent item bank depletion, it is necessary
to identify the precise nature of the depletion. Which types of items are
selected first, and which types of items tend to remain behind when no
precautions are taken? For commonly used ATA models, it is easy to de-
termine which items are most favourable. A look at the objective function
of the maximin model (van der Linden and Boekkooi-Timminga, 1989) re-
veals that highly discriminating items are more likely to be selected than
lowly discriminating items.

5.3 Item Bank Depletion 81

A simple simulation of a large-scale test assembly problem, resembling
the case of the Physics examinations in the USE program, confirms the
favourableness of highly discriminating items. From an item pool consist-
ing of 10000 items with parameter distribution of log() N(1, 0.36) and

N(0, 0.28), a number of tests was assembled. Annual groups of 100
tests were assembled sequentially for a target population with ability dis-
tribution N(0.01, 0.23). Each test contained 30 items and required a
maximum overlap of three items with any other test within its group, and
no overlap with other tests. Each item should appear in no more than two
tests. The PARIMAX model was used to formulate the test assembly prob-
lem involved. The test information function (TIF) target was defined to be
equal at three ability points 1 = 0.34, 2 = 0.0, and 3 = 0.34. Equa-
tions (5.1) through (5.6) specify the test assembly problem used. Ii(k)
is the information function value of item i at point k, while xij is the
decision variable indicating whether item i is selected in test j:

maximise y (5.1)

subject to: y
X
i

Ii(k)xij k, j (5.2)X
i

xij 30 j (5.3)X
i

xijxil 3 j, l (5.4)X
j

xij 2 i (5.5)

xij =

½
1, item i in test j
0, else

i, j. (5.6)

The tests were assembled through the DOT 2005 software (Verschoor,
2005), while the depletion of the item bank was investigated through the
parameter distribution of the items remaining in the pool. These specifi-
cations were observed to require between 1500 and 1600 items annually,
thus an item pool of 10000 items could support the test demand for six
years before new items had to be added or previously used items had to be
returned. The assembled tests were evaluated using two criteria: the height
of the TIF values on the three ability points and the average standard error
of measurement for the target population:

=

Z
g()p
I()

d . (5.7)

Table 5.1 contains the TIF values at the specified ’s, averaged over the
100 tests per year, as well as the average -values. Next to the average TIF

82 5. Preventing the Bankruptcy of an Item Bank

TABLE 5.1. Average TIF-values and -values (USE Physics)

Year I(1) I(2) I(3)
M SD M SD M SD M SD

1 91.7 1.3 122.8 6.9 91.5 1.4 0.102 0.001
2 66.5 0.6 95.7 1.0 66.6 0.6 0.118 0.001
3 51.6 0.3 64.5 0.0 51.6 0.3 0.136 0.000

4 45.8 0.5 49.1 0.7 45.1 0.3 0.148 0.001
5 26.6 0.0 29.8 0.0 26.6 0.0 0.192 0.000
6 25.5 0.1 28.1 0.0 25.6 0.1 0.196 0.000

values, the standard deviations are reported, giving an indication of to what
extent the tests can be assumed to be parallel. It can be clearly seen that
over six years, the average height of the TIF decreases to approximately
25% of the average TIF in the first year. At the same time, the average
almost doubled. Thus, it could not be maintained that the tests in the last
year were parallel to the tests in the first year, and signs of depletion were
obvious.
Figure 5.2 shows the distributions of the a- and b-parameters of the avail-

able items at the start and directly after assembly of the tests for the second,
fourth and sixth year. It can be observed that items with high discrimina-
tion parameters are favoured, thus depleting the pool with respect to these
items. This e ect is in line with similar findings for computerised adaptive
tests, as were found, for example, by Lord (1980). As a result, the lower
discriminating items tended to remain, from which only low-informative
tests could be assembled. A second observation is that no significant de-
pletion with respect to item di culty occurred. For every di culty level a
reasonably large choice of items remained available during the entire test
assembly process.

5.3 Item Bank Depletion 83

0 1 2 3 4 5 6 7 8

Item Discrimination

Before
Year 2
Year 4
Year 6

-1 -0.5 0 0.5 1

Item Difficulty

Before
Year 2
Year 4
Year 6

FIGURE 5.2. Parameter Distributions (USE Physics)

A second simulation, resembling the Listening examinations of the DSL
program, was conducted. The current examinations have, on average, a
TIF value of 122.6 at the cut-o point. The test specifications require a
TIF target defined at two ability points. The first point is the cut-o point
at which a TIF target of 122.6 should be reached, and the second point was
chosen at 0.15, with an equal target. This results in a TIF that will be high
in the interval (0.15 6 6 0.089), and a cut-o score at approximately
70% of the maximum raw score.
Thus, for the simulations the target was defined to be 122.6 at 1 = 0.15

and 2 = 0.089, while the test length was minimised. Test overlap was not
allowed. Equations (5.8) through (5.12) specify the test assembly problem:

84 5. Preventing the Bankruptcy of an Item Bank

minimise y (5.8)

subject to: y
X
i

xij j (5.9)X
i

Ii(k)xij 122.6 k, j (5.10)X
j

xij 1 i (5.11)

xij =

½
1, item i in test j
0, else

i, j. (5.12)

Every year 100 items were added to the item bank drawn from the target
parameter distribution: log() N(1.5, 0.28) and N(0, 0.24). At the
same time, every year 50 items were removed because they were no longer
considered to be appropriate. Although in the DSL program it is allowed
to reuse items after two years, reuse was not allowed in the simulations at
all.

TABLE 5.2. Average TIF-values and -values (DSL)

Year I(1) I(2) Length
M SD M SD M SD

1 130.2 3.5 129.2 1.0 0.143 0.004 12
2 125.1 1.2 125.1 1.4 0.124 0.002 17
3 131.9 3.4 125.6 0.4 0.108 0.002 22

4 124.6 1.9 123.6 1.1 0.107 0.001 27
5 136.4 4.4 124.7 0.7 0.102 0.002 30

In Table 5.2, it can be seen the test length rose rapidly over the years,
while the average TIF values remained rather stable. At the same time, the
average standard error of measurement, , dropped significantly over the
years, despite the fact that the TIF at the specified abilities was almost
constant. These signs indicate that large di erences in information might
be found at extreme abilities, and hence that the tests might not be par-
allel at these ability levels. If the di erences between the TIFs are deemed
unacceptable, it might be wise to specify the target at more ability points
in order to decrease these di erences. But even then, it might be expected
that the test length will have to rise over time in order to maintain stable

5.3 Item Bank Depletion 85

values for both the TIF and .

0 2 4 6 8 10

Item Discrimination

Before
Year 1
Year 2
Year 3
Year 4
Year 5

-1 -0.5 0 0.5 1
Item Difficulty

Before
Year 1
Year 2
Year 3
Year 4
Year 5

FIGURE 5.3. Parameter Distributions (DSL)

Figure 5.3 shows the distribution of the a- and b-parameters of the avail-
able items at the start and after test assembly each year. Also for the DSL
simulations, items with high discriminations were favoured and tended to
be selected early on. Contrary to the absence of depletion with respect to
item di culty in the simulations for the USE program, Figure 5.3 shows
that the test assembly process had a tendency to select the somewhat more
di cult items, that is, those with a b-parameter near the cut-o ability. De-
spite this tendency, still su cient items from all di culty levels remained
available.

86 5. Preventing the Bankruptcy of an Item Bank

5.4 Item Bank Management Strategies

Item bank management strategies should prevent the depletion of item
banks with respect to highly discriminating items. The following four ac-
tions could be considered:

Stratification. The first strategy is stratification of the item pool accord-
ing to the discrimination parameters of the items. By adding restric-
tions to the test assembly model, the number of selected items from
every stratum can be restricted to be proportional to the number of
available items in the pool. Thus, an even use of items from vari-
ous discrimination categories will be enforced. As a result it would
be plausible that the parameter distribution in the output process is
equal to the parameter distribution in the pool and the latter distri-
bution remains stable.

Subdivision. The second strategy is a random subdivision of the entire
item pool into several pools. Each year a pool will be selected to
serve as the current pool. The size and number of these pools can
be determined by observing how many items are needed for solutions
without any item bank management. Each current pool should have
this size in order to fulfill the demands for test assembly each year,
and the number of years that the testing program could be supported
before depletion will occur is thus equal to the number of pools that
can be constructed. In every item bank, however, lowly informative
items, which do not contribute substantially to the information in
the tests, can be found. If the pool sizes are increased, more of these
lowly informative items can be left unused. More highly informative
items would be selected, resulting in higher-informative tests. Re-
versing this argument reveals the dilemma that test assemblers are
confronted with: In order to assemble more informative tests, the pool
sizes should be increased, shortening the life span of the bank.

An alternative subdivision, through parallel item pool assembly, could
be considered if di erences between the tests appear to be unaccept-
ably high when a random subdivision is used.

Shadow pool. The third item bank management strategy is the big-shadow-
test method proposed by van der Linden (2005). In this method, the
items are selected either directly in the current tests or in a shadow
test. The items in the shadow test are preserved and after test as-
sembly they are returned to the item pool. In the current application
the big shadow test can be considered as a shadow item pool.

Similar to the decision on the pool sizes in case of random subdivision,
a decision must be made on the size of the shadow item pool. The
fewer items are accepted to be left unused, the larger the shadow pool

5.5 Simulations 87

should be. Once the size of the shadow pool has been determined,
the restrictions can be assumed to be proportional to the sizes of
the current tests, while no overlap between the shadow pool and the
current tests is allowed.

Alternative IRT model. The fourth item bank management strategy is
using an alternative IRT model that does not allow for any di er-
ences in item discrimination: the Rasch model. When no di erences
in item discrimination are recognised, then by definition no depletion
of highly informative items could occur, thus avoiding the manage-
ment problems completely. There is a remark to be made, however. It
may be observed in practice that using the Rasch model may result
in the rejection of 10 - 15% of the available items during calibration
due to poor item fit. Many of those items would fit the 2PL-model
because the only deficiency is that their discriminations are too high
or too low for the Rasch model.

5.5 Simulations

A series of simulations was performed to investigate which strategy prevents
depletion most e ciently. Three scenarios were used for the two testing
programs. Scenario 1 and 2 were used to investigate the proposed item
bank management strategies for the USE program and were based on the
previously simulated item bank. Scenario 1 represented the situation in the
near future, when the item bank is still under development. At the start,
5000 items were available, to which every year 1000 new items were added.
Scenario 2 represented a situation in the longer future, without structural
item development. All 10000 items were available at the start, while no
replacement or extension was assumed. In both scenarios, 100 tests were
assembled annually: Each test consisted of 30 items, while the test overlap
was restricted to three, and the item exposure restricted to two. Overlap
between tests of di erent years was not allowed. The TIF target was defined
to be equal at three ability points 1 = 0.34, 2 = 0.0, and 3 = 0.34.
Scenario 3 simulated the DSL program. At the start of the simulations,

767 calibrated items were available, to which 100 items were added annually
to the item bank drawn from the target parameter distribution: log()
N(1.5, 0.28) and N(0, 0.24). At the same time, 50 items were removed
annually to represent that they were considered to be outdated. Every year,
six tests with no overlap were assembled.
The aim of these simulations was to investigate which strategy prevents

depletion most e ciently. Therefore, the following conditions were studied:

• No action was undertaken with respect to depletion. This condition
served as the base line condition.

88 5. Preventing the Bankruptcy of an Item Bank

• The items were stratified according to their discrimination. In the
item bank for the USE program, the range of discrimination parame-
ters was observed to be [1..10]. Five strata were defined:

Stratum Available Items
1 > 6 253
2 = 5 564
3 = 4 1573
4 = 3 3624
5 6 2 3986

Furthermore, four restrictions for every test were added to the test
assembly problem in (5.1) - (5.6). In each test, a maximum number
of 1, 2, 5 and 10 items were allowed from strata 1 through 4, respec-
tively. As items from stratum 5 were expected to be selected only
when no alternatives were available, they could be selected freely.
The stratification restrictions were formulated asX

i

cimxij Cm m, j

whereby coe cient cim indicates the stratification, having value 1
if item i belongs to stratum m, and value 0 otherwise. Cm is the
maximum number of items from stratum m in the tests.

In the DSL bank, the discrimination parameters varied from 2 to 10
and the item bank was stratified using 6 categories:

Stratum Available Items
1 > 8 65
2 = 7 101
3 = 6 264
4 = 5 468
5 = 4 550
6 6 3 318

Five restrictions per test were added to (5.8) - (5.12), imposing max-
ima on the number of items to be selected from each stratum. As the
test lengths were not fixed, these maxima were expressed as percent-
ages of the realised test length, rounded o upwards. (3%, 6%, 15%,
25% and 30% were allowed in strata 1 through 5, respectively.) Se-
lection of items from stratum 6 was not restricted. These restrictions
were formulated asX

i

cimxij

$
Cm

X
i

xij

%
m, j

5.5 Simulations 89

whereby Cm is the maximum fraction of items from stratum m in the
tests.

• The items were selected from a random subdivision that was slightly
larger than the total number of items needed. For USE, every year
1666 items were randomly drawn from the available items, in order
to form the current pool. For DSL, the number of items needed was
not fixed as the corresponding test specifications were based on a
minimisation model. The goal was, however, to assemble tests with
TIFs comparable to the existing tests, using a maximum of approx-
imately 30 items each. The aim, therefore, was to use no more than
approximately 180 items per year. Based on this situation, the size
of the item pools was determined to be 200 items.

• The idea behind the shadow pool method is the distribution of charac-
teristics of the items in the tests is equal to that of the items reserved
for future use. Therefore, the shadow pool should contain the vast
majority of the items remaining available. The size of the shadow
pool was determined at 90% of the remaining items. Thus, the size
for year i was 0.9(5000 500i) for Scenario 1 and 0.9(10000 1500i)
for Scenario 2. For Scenario 3, not the size of the shadow pool had to
be restricted, but the target for the TIF had to be determined. The
target was 122.6 6 0.9 Ni/180, where Ni denotes the size of the
item pool in year i.

• Items were calibrated under the Rasch model. Use of this model re-
sulted in the rejection of a total of 1318 items in the USE bank, and
of 103 items in the DSL bank.

For Scenario 1, the results of the simulations are presented in Tables 5.3
and 5.4. The average -values in Table 5.3 showed a moderate increase
for the Rasch model and the stratification approach, while they remained
almost constant for the subdivision and shadow pool methods. In Table 5.4,
the minimum TIF values at the three specified ’s are presented, averaged
over the 100 tests assembled for each year, together with the standard
deviation observed across these minima. In accordance with the increase
in for the Rasch model and the stratification approach, the minimal
TIF values showed a decline. Because of the fact that 1318 items had to
be rejected for the Rasch model, in year 6 only 77 parallel tests could be
assembled instead of the required 100 tests.
The results for Scenario 2 are shown in Tables 5.5 and 5.6. The di erences

were somewhat larger than for Scenario 1. In Scenario 1, every year a num-
ber of items was added according to the original parameter distribution,
thus replenishing the highly discriminating items somewhat while Scenario
2 lacked this replenishment. Also in Scenario 2, the subdivision and shadow
pool methods showed an output of tests with almost constant properties

90 5. Preventing the Bankruptcy of an Item Bank

TABLE 5.3. Average -values for Scenario 1

Year None Rasch Stratification Subdivision Shadow
1 0.101 0.146 0.134 0.136 0.136
2 0.129 0.147 0.135 0.136 0.136
3 0.142 0.148 0.142 0.136 0.137
4 0.152 0.151 0.136 0.138 0.137

5 0.155 0.154 0.144 0.137 0.137
6 0.150 0.155? 0.147 0.135 0.135

Note: ? : Only 77 tests could be assembled

TABLE 5.4. Average Minimum I() for Scenario 1

Year None Rasch Strat. Subdiv. Shadow
M SD M SD M SD M SD M SD

1 78.6 0.8 45.1 0.1 51.2 0.1 50.7 0.4 51.8 0.4

2 56.4 2.7 44.5 0.1 51.2 0.3 51.5 0.5 51.4 0.4
3 47.5 0.6 44.0 0.2 49.5 0.4 51.6 0.6 50.8 0.4
4 41.1 0.5 42.6 0.2 50.9 1.2 49.7 0.6 51.2 0.5

5 40.0 0.5 41.2 0.2 47.1 1.5 50.3 0.5 50.5 0.5
6 42.2 0.6 40.3? 0.2 43.3 1.0 52.0 0.6 52.0 0.5

Note: ? : Only 77 tests could be assembled

over the years. Note that for both scenarios, the Rasch method did not
only fail to assemble the required number of tests in the last year but the
height of the TIFs and the -values were also unfavourable compared to
the other methods. All poorly fitting items were removed, this involved not
only items that had a low a-parameter in the 2PL-model and thus would
normally be ignored but also items with a high a-parameter for the 2PL-
model, which would have contributed substantially to the information in
the tests if they had been available.
The simulation results for Scenario 3 are presented in Tables 5.7 and 5.8.
The average -values are given in Table 5.7. For all strategies, except

subdivision, the -values tended to decrease, a sign that the tests might
not be parallel over the years. Contrary to Scenarios 1 and 2, the shadow
pool method for Scenario 3 showed a slight deterioration. This phenomenon
can be explained by the use of the test assembly models: In minimisation
models, the test length is not fixed but must be estimated instead. Yet,
this number of items was used as the basis to determine the size of the
shadow pool, or in case of minimisation models, the target for the TIF of the
shadow pool. In hindsight, the numbers of items used annually appeared to

5.6 Discussion 91

TABLE 5.5. Average -values for Scenario 2

Year None Rasch Stratification Subdivision Shadow
1 0.102 0.146 0.133 0.136 0.136
2 0.118 0.146 0.134 0.136 0.136
3 0.136 0.147 0.135 0.136 0.136
4 0.148 0.149 0.137 0.138 0.136

5 0.192 0.153 0.141 0.137 0.137
6 0.196 0.165? 0.163 0.135 0.138

Note: ? : Only 77 tests could be assembled

TABLE 5.6. Average Minimum I() for Scenario 2

Year None Rasch Strat. Subdiv. Shadow
M SD M SD M SD M SD M SD

1 91.0 1.2 45.3 0.0 51.2 0.0 50.7 0.4 52.4 0.4

2 65.5 0.6 45.1 0.0 51.2 0.1 51.5 0.5 52.0 0.5
3 51.2 0.1 44.6 0.0 51.4 0.1 51.6 0.6 51.8 0.4
4 45.2 0.3 43.8 0.0 51.4 0.3 49.7 0.6 51.4 0.4
5 26.6 0.0 41.9 0.1 50.2 1.2 50.3 0.5 50.8 0.5
6 25.5 0.0 36.7? 0.1 38.2 0.4 52.0 0.6 49.5 0.5

Note: ? : Only 77 tests could be assembled

be smaller than the estimated 200 and an improved estimation might have
improved the performance of the shadow pool method. On the other hand,
the subdivision method appeared to be more robust against estimation
errors for item usage.

5.6 Discussion

Long-term use of items is one of the main reasons for which testing agencies
make use of item banks. At the same time, the use of automated test assem-
bly methods poses a threat to the life span of these banks. In this paper it is
shown that item banks can be depleted rapidly if no counter measures are
taken. Therefore, it is important for the design of an item bank to use meth-
ods for prevention of depletion from the start. In the two testing programs
discussed in this paper, the reason of depletion was the tendency to select
highly discriminating items. Various item bank management methods were
considered, two of which appeared to e ectively prevent depletion of highly

92 5. Preventing the Bankruptcy of an Item Bank

TABLE 5.7. Average -values for Scenario 3

Year None Rasch Stratification Subdivision Shadow
1 0.143 0.110 0.121 0.113 0.117
2 0.124 0.110 0.118 0.113 0.114
3 0.108 0.108 0.110 0.114 0.109
4 0.107 0.102 0.109 0.110 0.109

5 0.102 0.099 0.102 0.115 0.109

TABLE 5.8. Average Test Lengths for Scenario 3

Year None Rasch Stratification Subdivision Shadow
1 12.0 27.0 20.5 20.3 20.8
2 17.5 27.0 21.7 20.8 22.5

3 22.0 28.7 23.8 20.3 25.3
4 26.7 30.7 25.7 22.2 25.0
5 30.2 35.0 29.3 19.7 24.7

discriminating items: random subdivision of the bank and the shadow pool
method. Of these two, random subdivision of the item bank into several
item pools, and subsequently selecting one pool as the active pool to as-
semble the tests from, is the simplest method. If the test specifications do
not contain many restrictions, using this method ensures an output of tests
of constant quality over the years. Although test specifications with larger
numbers of restrictions were not needed in the programs under consider-
ation, and hence were not considered in this paper, it remains to be seen
whether this method still performs well.
The shadow pool method performed at least equally well for maximin

models. On the other hand, for minimisation models the shadow pool
method seemed to be less robust than the random subdivision of the item
bank into pools.

6
Epilogue

The wish to construct high-quality tests is the raison d’être of the test
assembly models that have been developed over the last two decades. Dif-
ferent practical situations may need di erent models as well as di erent
algorithms to solve these models. Predictably, large-scale testing programs
ask for models of growing complexity, resulting in more complicated and
time consuming item selection algorithms. As the concepts of item response
theory, such as the test information function, are rather abstract, models
using classical test theory are often preferred in practical situations, result-
ing in nonlinear test assembly models.
Current algorithms, however, are usually based on branch-and-bound

methods and not always suitable for solving large-scale or nonlinear mod-
els. Therefore, local search algorithms such as genetic algorithms may prove
to be a viable alternative, even if they fail to give a proof of optimality.
A strong point of genetic algorithms is that they are extremely robust
with respect to the structure of the problems, that is, they are capable of
solving large-scale integer nonlinear programming problems. In a genetic
algorithm, a population is formed by solutions that mate, get o spring, and
struggle for survival. A solution, that is, a possible test, or in the case of
the models studied in Chapters 4 and 5, a set of tests, is represented by a
chromosome. In each iteration, pairs of solutions are selected to mate and
reproduce. The crossover operator passes on genetic information encoded
in the chromosomes from the parents to the children, while the mutation
operator modifies the chromosomes of the children slightly. Thus, it is likely
that the children have some resemblance to both their parents. A survival
mechanism reduces each new population, which temporarily consists of

94 6. Epilogue

both parents and children, to its original size. Both mate selection and sur-
vival are controlled by the fitness of the solutions. Quantifying this fitness
is an important element in the implementation of a genetic algorithm.
The main topic of this thesis is to design genetic algorithms for auto-

mated test assembly. For such algorithms to be successful, they should be
able to solve classes of problems that arise in practical testing situations
better than current methods.
Two basic test assembly models, together with a genetic algorithm, were

proposed in Chapter 2. The focus was mainly to show that a genetic al-
gorithm can successfully be implemented for test assembly problems. It
was shown that a combination of mate selection proportional to the fitness
of the solutions, uniform crossover, survival of the fittest solutions, and a
dynamic penalty scheme to incorporate restrictions gave the best results.
Comparison with a commercially available solver showed that for nearly all
problems acceptable solutions were found.
In Chapter 3, a model based on classical test theory was presented. Solv-

ing the proposed nonlinear CMAX model with a genetic algorithm had two
advantages: First, Cronbach’s of the proposed test could be estimated
directly. Second, solutions with a higher than those found by the often-
used Model II of Adema and van der Linden could be found. The purpose
of the CMAX model is to assemble a test with as high as possible, under
restrictions of, for example, a fixed test length and a given content domain.
With this model, one of the advantages of genetic algorithms became fully
apparent. While a genetic algorithm for the CMAX model, which might be
considered an alternative to Model II, produced solutions that were bet-
ter than those produced for Model II, we were able to propose the CMIN
model for the assembly of a test as short as possible for a given . The
CMAX model would be useful in situations where consequences of wrong
decisions demand a test that exceeds a minimum , for example, in high-
stakes testing.
Large-scale test assembly is the main topic of Chapter 4. Frequently, test-

ing programs are faced with the task to develop sets of test forms where
each test form serves a slightly di erent purpose and a limited overlap
between the forms is allowed. Especially the requirement of a limited over-
lap results in either a nonlinear model or the introduction of numerous
dummy variables and corresponding restrictions. In the case of the Russian
Unified State Examination testing program as described in Chapter 5, an
admittedly very large example, the overlap specifications led to the use of
approximately 100,000,000 dummy variables and equally many restrictions.
Unfortunately, the models formulated for these testsets turned out to be
epistatic, that is, the fitness function did not make a distinction between so-
lutions and as soon as a feasible solution to the problem had been found, the
genetic algorithm lost an incentive to search for improvements. However,
evaluating two di erent fitness functions in consecutive iterations proved to
be an e ective method to prevent epistasis. To continue the analogy with

6. Epilogue 95

biological processes this approach could be considered as the modelling of
seasons in an evolutionary process.
The use of large-scale problems, such as in the Unified State Examina-

tion, may risk overusing the item pools built by the testing programs, thus
wasting the investments made. Therefore, the limits to large-scale test as-
sembly were explored in Chapter 5. Long-term sequential assembly of test
forms from an item pool may cause its depletion, not entirely unlike the
e ects that can be observed in computerised adaptive testing: The highly
discriminating items are selected first, resulting in depletion in the case
of test assembly, or resulting in overexposure in the case of computerised
adaptive testing. Item selection algorithms should be harnessed in order
to prevent these adverse e ects. We found that division of the item bank
into active pools that could be used consecutively was the best method to
prevent item bank depletion.

One of the advantages of genetic algorithms is their capability to op-
timise nonlinear programming problems, and in extension to this thesis
the question arises for which other item selection problems genetic algo-
rithms can be used. Next to the models for item selection using classical
test theory or item response theory that have been developed, optimisation
models for generalisability theory have been developed, assuming random
selection of for example, items and raters. Optimal selection of raters for a
given test might improve interrater reliability, subject to restrictions that
each team of raters give approximately equal severity of scoring. Simulta-
neous selection of items and raters might further improve the reliability
of the testing procedures. As could be expected, the objective functions
related to these procedures are nonlinear, hence genetic algorithms might
be the proper tool to solve such models. A second application in which
genetic algorithms may be successfully employed is the construction of op-
timal designs. The objective functions related to for example, A-optimality
and D-optimality are nonlinear, while the associated designs are subject
to a wide variety of practical restrictions similar to the restrictions in test
assembly models.
Computerised adaptive testing might be regarded as the ultimately op-

timal item selection method: All information gathered during test admin-
istration is used to dynamically select items. Eggen (2004) has shown that
a significant reduction of test length can be accomplished with a comput-
erised adaptive test, compared to a conventional, or linear, test with equal
measurement error. But for some test purposes for example, certification
tests, the di erence between a computerised adaptive test and an optimally
assembled linear test could be very small, while practical considerations,
such as item security, suggest to use a linear test instead. Therefore, it can
be foreseen that computerised adaptive tests will not fully replace linear
tests.

96 6. Epilogue

Genetic algorithms are not the only class of local search algorithms. Two
other classes show great resemblance to genetic algorithms and thus might
successfully solve test assembly problems.
The first class is simulated annealing. An often-used analogy to describe

simulated annealing is the process of forging iron. Heating causes the atoms
to move more fiercely while a careful cooling process will freeze the atoms
in a strong structure. A repeated process of balancing heating and cool-
ing builds an optimal structure in which the atoms represent the decision
variables of the optimisation problem.
The second class is neural networks, also frequently described in terms

of an analogy: Synapses learn to react to certain stimuli in order to recog-
nise certain patterns. As the decision variable values of optimal and near-
optimal solutions form patterns, the objective function teaches the synapses
the proper reaction to these patterns. Neural networks are frequently used
for solving optimisation problems. Similar to genetic algorithms, these
problems need not be linear. All three classes share the property that a
tailor-made implementation might be needed for acceptable performances,
and thus also neural networks and simulated annealing could be considered
for nonlinear item selection problems.

A last consideration is the application of test assembly models and ac-
companying algorithms in the practice of testing programs. Many testing
agencies have extensive item bank management systems nowadays, in which
it would be relatively easy to incorporate optimisation software. Designers
of item banking software have a choice of roughly two options: either to em-
ploy ready-made commercially available optimisation software or to design
dedicated software. Several solvers using branch-and-bound methods are
available, and these solvers could either be used directly by specialists or a
user interface for the definition of the test specifications and interpretation
of the outcome could be developed. On the other hand, if designers would
prefer to implement genetic algorithms into their item banking systems,
only one option will be available: to design the dedicated software needed.
Next to the user interface, also the algorithms must be developed. Cito has
chosen for the latter option, and the resulting software has been used in all
studies in this thesis.

Samenvatting (Summary in Dutch)

Als er één ontwikkeling aan te geven is die de evolutie van toetsconstructie
over de afgelopen twee decennia karakteriseert, is het wel de toegenomen
inzet van computers: Diverse modellen voor geautomatiseerde toetscon-
structie werden geformuleerd, terwijl tegelijkertijd geavanceerde systemen
werden ontwikkeld voor de opslag van toetsvragen, samen met hun psy-
chometrische en inhoudelijke kenmerken.
Aan de andere kant kan men in het veld van optimaliseringsmethoden

de ontwikkeling zien dat gebruik van z.g. local search algoritmen toeneemt,
soms in plaats van traditionele algoritmen zoals branch-and-bound algo-
ritmen. Een klasse van deze local search algoritmen wordt gevormd door
genetische algoritmen. Geïnspireerd door processen in de natuur imiteren
genetische algoritmen processen uit de evolutietheorie: Een groep van oplos-
singen, in geval van toetsconstructieproblemen zijn dit mogelijke toetsen, of
voor de modellen in hoofdstuk 4 en 5 sets van toetsen, vormt een populatie
die in een aantal iteraties evolueert naar een regio van de oplossingsruimte
waarin ook het optimum van het probleem zich bevindt. De oplossingen
worden gerepresenteerd door chromosomen. In iedere iteratie worden ou-
derparen geselecteerd voor het krijgen van nageslacht dat eigenschappen
van de ouders erft. De crossover-operator geeft informatie opgeslagen in
de chromosomen van de ouders door aan de kinderen, terwijl de mutatie-
operator zorgt voor lichte aselecte afwijkingen. Hierdoor is het waarschijn-
lijk dat kinderen gaan lijken op beide ouders. Vervolgens zorgt een ’strug-
gle for survival’-mechanisme ervoor dat de nieuwe populatie, nu bestaande
uit ouders en kinderen, weer wordt teruggebracht tot de originele grootte.
Het principe van survival-of-the fittest wordt vormgegeven door het feit

98 Samenvatting

dat goede oplossingen een hogere kans op nageslacht en overleving hebben
dan minder goede oplossingen. Hierdoor ontstaat een flexibel optimalise-
ringsalgoritme waarvoor men onder bepaalde voorwaarden diverse bewijzen
van convergentie kan leveren. Het theoretische belang van deze bewijzen is
echter groter dan het praktische belang aangezien implementaties waarvoor
een convergentiebewijs kan worden gegeven in de regel dermate traag zijn
dat ze in de praktijk slechts zelden worden gebruikt.
In dit proefschrift komen beide ontwikkelingen samen: Het voortschrij-

dende gebruik van itembanken doet de vraag naar steeds complexere toets-
constructiemodellen toenemen, waarvoor de huidige oplosmethoden niet
altijd geschikt zijn. Het ligt dan voor de hand te onderzoeken in hoeverre
genetische algoritmen kunnen worden ingezet voor toetsconstructieproble-
men.
Wil men kunnen beweren dat genetische algoritmen met succes kun-

nen worden gebruikt, dan zullen zij voor een belangrijke klasse van prak-
tijkproblemen goede oplossingen moeten kunnen produceren. Hoofdstuk 2
laat zien dat genetische algoritmen in staat zijn acceptabele oplossingen
te vinden voor problemen die ook op een andere manier kunnen worden
opgelost. Daarbij rijst wel de vraag welke implementatie het meest e -
ciënt is. Er werd door ons gevonden dat een combinatie van paringskansen
evenredig aan de fitness van de oplossingen, een uniforme crossover, het
laten overleven van alleen de beste oplossingen, en het gebruik van een
dynamische boetefunctie voor het overschrijden van voorwaarden de beste
resultaten gaf. In vrijwel alle onderzochte toepasingen werd een acceptabele
oplossing gevonden.
In toepassingen waar de itemresponstheorie niet in gebruik is, wordt veel-

al de voorkeur gegeven aan toetsconstructiemodellen gebaseerd op klassieke
toetstheorie. In hoofdstuk 3 wordt het niet-lineaire CMAX model voorge-
steld, waarin een benadering voor Cronbach’s wordt geoptimaliseerd.
Weliswaar is een goed model in de vorm van Model II van Adema en van der
Linden voorhanden, maar bij gebruik van het CMAX model is het echter
mogelijk een betere benadering te geven voor Cronbach’s , terwijl tevens
oplossingen kunnen worden gevonden met een hogere dan bij Model II.
Deze benadering maakt een tweede model mogelijk, namelijk het CMIN
model. Dit model gaat uit van de situatie waarin een zo kort mogelijke
toets met een zekere is gewenst. Het CMIN model is met name geschikt
voor high-stakes testing, waarbij het belang van beslissingen een niet te
grote foutmarge dicteert.
Hoofdstuk 4 behandelt het probleem van grootschalige toetsconstructie,

waarbij uit een verzameling items een grote samenhangende set van toet-
sen moet worden geconstrueerd. Iedere toets in deze set heeft een eigen
doel en eigen specificaties, waarbij tussen sommige toetsen wel en tussen
andere toetsen geen overlap wordt toegestaan. Speciaal de eisen rond de
overlap zijn problematisch voor de bestaande optimaliseringsmethoden: De
overlap-voorwaarden veroorzaken de introductie van dummy-variabelen en

Samenvatting 99

bijbehorende extra restricties, en voor sommige problemen is dit een groot
aantal. Ter illustratie: in het geval van de Russische centrale staatsexam-
ens dat beschreven is in hoofdstuk 5 — een zeer groot probleem — zijn circa
100.000.000 dummy-variabelen nodig. Als alternatief kan worden gekozen
voor een niet-lineaire modelformulering die door genetische algoritmen kan
worden opgelost. De modellen voor de constructie van de sets van toet-
sen zijn echter wel epistatisch: Zodra er een toegelaten oplossing wordt
gevonden verliest het genetische algoritme iedere aansporing tot verbetering
waardoor de optimalisering vroegtijdig stopt. Het afwisselend evalueren van
twee verschillende fitness functies bleek een e ectieve strategie om epistase
te voorkomen. Men kan deze aanpak beschouwen als het voorkomen van
seizoenen in de natuurlijke processen die door een genetisch algoritme wor-
den geïmiteerd.
Met grootschalige problemen zoals de Russische centrale eindexamens

loopt men risico roofbouw te plegen op de itembanken waardoor gepleegde
investeringen teniet gedaan kunnen worden. Derhalve werden in hoofd-
stuk 5 de grenzen aan geautomatiseerde sequentiële toetsconstructie ver-
kend. Langdurig grootschalige toetsconstructie kan leiden tot uitputting
van de itembank: Indien er geen beperkingen aan de toetsconstructie wor-
den opgelegd, worden hoogdiscriminerende items in het algemeen sneller
geselecteerd waardoor de kwaliteit van de toetsen die later worden gecon-
strueerd beduidend lager is dan van eerder geconstrueerde toetsen. Het is
daarbij goed te bedenken dat een dergelijke uitputting zich niet alleen bij
het gebruik van genetische algoritmen voordoet, maar bij alle optimali-
seringsmethoden, inclusief handmatige procedures. Enkele strategieën ter
voorkoming van deze uitputting werden met elkaar vergeleken. Het opdelen
van de gehele itembank in een aantal delen, waarbij in iedere periode een
deel wordt gebruikt voor toetsconstructie, bleek een eenvoudige en doel-
tre ende maatregel.

100 Samenvatting

Appendix A
Interitem Relations

The transformation from a Boolean expression, such as an interitem re-
lation, to a numeric function called payo function, involves a few rather
simple steps without the need to use conjunctive normal form (CNF) or
the introduction of dummy variables and restrictions, which are needed for
linear restrictions. The use of CNF may be time consuming and may result
in many linear restrictions, needing much extra computer power to solve
by them. The introduction of dummy variables and restrictions may also
increase the complexity substantially. On the other hand, Smith (1979)
has shown that nonlinear restrictions based on payo functions can be ef-
ficiently solved by genetic algorithms.
Let z be a Boolean variable, and f(z) its associated payo , having value

1 if z is true, or less if false. Then the following transformation rules can be
used in order to transform a Boolean expression into a numerical restriction:

f(¬z) = 1 f(z)

f(z1 z2) = min {f(z1), f(z2)}
f(z1 z2) = max {f(z1), f(z2)} .

De Jong and Spears (1989) have shown that the performance of genetic
algorithms can be improved by transformation into di erential payo func-
tions, substituting the minimum by the average in the transformation rules.
However, the only types of expressions that can successfully be transformed
are the ones in which the ¬-operator has the scope of simple variables.

102 Appendix A. Interitem Relations

Consider the following example of an interitem relation:

If item 1 is selected without item 2,
then select item 3 but not item 4

(A.1)

Define z1, ..., z4 as the Boolean variables associated with the selection of
items 1, ..., 4, respectively, and let½ denote the if-then operator. The re-
lation in (A.1) can then be formulated as the following Boolean expression:

(z1 ¬z2)½ (z3 ¬z4). (A.2)

The first step towards a restriction based upon the di erential payo func-
tion of relation (A.1) is the elimination of the ½-operator. condition A
½ clause B can be standardised as ¬ condition A clause B. Thus,
standardisation of the expression in (A.2) results in

¬(z1 ¬z2) (z3 ¬z4). (A.3)

The scope of the ¬-operator can be reduced by the application of De Mor-
gan’s laws. Therefore, we rewrite the expression in (A.3) as

¬z1 z2 (z3 ¬z4). (A.4)

The next step is the transformation of the expression in (A.4) into decision
variables x1, ..., x4. Substitute zi by xi, ¬zi by 1 xi, by maximum, and
by minimum. The expression in (A.4) is thereby transformed into

max{1 x1;x2;min{x3; 1 x4}} = 1. (A.5)

De Jong and Spears argued that left hand sides of expressions such as in
(A.5) would only be evaluated to 1 in case it is met or to 0 if it is violated,
while a noninteger expression indicating the extent of violation would im-
prove the performance of a genetic algorithm. This type of restrictions gives
the genetic algorithm a direction to search for a solution that meets the
restriction.
Therefore, define the di erential payo function of relation (A.1) by sub-

stituting the average for the minimum:

pr(x1, ..., x4) = max

½
1 x1;x2;

x3 + 1 x4
2

¾
.

Hence, the restriction in (A.5) can be replaced by

max

½
1 x1;x2;

x3 + 1 x4
2

¾
= 1. (A.6)

The restriction in (A.6) can replace the interitem relation in (A.1) in
the test assembly problem. Note that a restriction of this type is nonlinear
and that a linear formulation using one single restriction is generally not
possible. For genetic algorithms, however, the only condition for restrictions
is that they can be evaluated, and linearity is no requirement.

Appendix B
Penalty Functions

Using a penalty function is a common approach to deal with infeasible
solutions. This approach allows any o spring to be generated but uses
a fitness function based on a relaxation of the optimisation problem. A
necessary condition for convergence to a feasible solution can be given: For
all infeasible solutions having directly neighbouring feasible solutions, there
must be at least one such neighbour with a higher fitness.
In order to proof this claim, consider a simple neighbourhood of a solu-

tion, defined by all solutions that di er just one item from it, that is, either
an item is added to or removed from it. Consider an infeasible solution with
at least one feasible neighbour. This means that there must exist at least
one item whose addition or removal yields a feasible solution, that is, a so-
lution in which the penalty function as formulated in (2.12) gives g(x) = 0.
At the same time, the objective function value must change by such a quan-
tity that the value of the fitness function in (2.11) for the feasible solution
is higher than the fitness of the solution under consideration.
Now consider an IMAX problem with only one restriction on the desired

shape of the TIF. Dummy variable y can be eliminated from the problem,
resulting in the objective function

maximise
P
i Iixi
T

.

Further, the problem has only one resource restrictionX
i

qixi Q.

104 Appendix B. Penalty Functions

For all infeasible solutions in the neighbourhood of a feasible solution it
holds that there is at least one item j whose removal yields a feasible
solution. Let S be such a solution. Let y(S) be the objective function
value for S and let Q (S) be Q P

i qixi, the value by which the resource
restriction is violated. The fitness of S is given by f(S) = y(S) Q (S).
By removing item j, the objective function value will decline to y(S) Ij

T .
Since this solution is feasible, its fitness is equal to the objective function
value. The penalty multiplier must be chosen such that

S : j : y(S) Q (S) < y(S) Ij
T

or

S : j : Q (S) > Ij
T
.

For a given solution S, the choice of item j is obvious: it is the item in the
test whose information at the chosen value of is lowest while qj > Q (S).
Item j, however, can be di erent for each solution S, and in the worst case
it is the item with the highest information in the item pool that must be
removed in order to reach feasibility:

S : Q (S) > max
j

Ij
T
.

In general, finding an infeasible solution with the smallest Q (S) causes
a problem. One can imagine that for some restrictions Q (S) might be
infinitesimally small, causing to go to infinity. This can be guaranteed
not to happen only for certain resource restrictions. If the restriction has
only integral coe cients, for example, in case of a maximum-number-of-
items restriction, it holds that S : Q (S) 1. It can be inferred that is
bounded by

> max
j

Ij
T
.

When adding other restrictions and reverting to the original definition of
the neighbourhood as the collection of all solutions that can be created in
one single iteration, the situation becomes less clear. But here the same
principle holds: although Q (S) can be very small, removal of highly in-
formative items might be the only way to reach the feasible region. In this
case, the lower bound of becomes excessively high. If infeasible solutions
are eliminated too quickly, the process might not pass to feasible solutions
with higher fitnesses, resulting in premature convergence.
Siedlecki and Sklanski (1989) suggest a dynamic penalty scheme of the

following form: Consider consecutive iterations and their best solutions.
If all these solutions appear to be infeasible, raise the penalty multiplier. If
all these solutions are feasible, lower the multiplier. In all other cases, leave
the penalty multiplier unchanged.

References

Achterkamp, M. (1993). Toetsconstructie met behulp van genetische algo-
ritmen (test construction with genetic algorithms). Master’s thesis,
University of Twente.

Ackerman, T. (1989). An alternative methodology for creating parallel tests
using the IRT-information function. Paper presented at the annual
meeting of the National Council on Measurement in Education, San
Francisco, CA.

Adema, J. & van der Linden, W. (1989). Algorithms for computerized test
construction using classical item parameters. Journal of Educational
Statistics, 14, 279—290.

Ariel, A. (2005). Contributions to Test-Item Bank Design and Management.
PhD thesis, University of Twente.

Armstrong, R., Jones, D., Li, X., & Wu, I.-L. (1996). A study of network-
flow algorithm and a noncorrecting algorithm for test assembly. Ap-
plied Psychological Measurement, 20, 89—98.

Armstrong, R., Jones, D., & Wang, Z. (1994). Automated parallel test con-
struction using classical test theory. Journal of Educational Statistics,
19, 73—90.

Armstrong, R., Jones, D., &Wu, I. (1992). An automated test development
of parallel tests from a seed test. Psychometrika, 57, 271—288.

106 REFERENCES

Aytug, H. & Koehler, G. (1996). Stopping criteria for finite length genetic
algorithms. INFORMS Journal of Computing, 8, 183—191.

Baker, J. (1985). Adaptive selection methods for genetic algorithms. In
J. Grefenstette (Ed.), Proceedings of an International Conference
on Genetic Algorithms and their Applications (pp. 101—111).: Pitts-
burgh: Carnegie-Mellon University.

Belov, D. & Armstrong, R. (2004). A monte carlo approach for item pool
analysis and design. Paper presented at the annual meeting of the
National Council on Measurement in Education, San Diego.

Binet, A. & Simon, T. (1905). Méthodes nouvelles pour le diagnostic du
niveau intellectual des anormaux. L’Année Psychologique, 11, 191—
244.

Birnbaum, A. (1968). Some latent trait models and their use in inferring
an examinee’s ability. In F. Lord & M. Novick (Eds.), Statistical
Theories of Mental Scores: Reading, MA: Addison-Wesley.

Boekkooi-Timminga, E. (1990). The construction of parallel tests for IRT-
based item banks. Journal of Educational Statistics, 15, 129—145.

Bridges, C. & Goldberg, D. (1987). An analysis of reproduction and
crossover in a binary-coded genetic algorithm. In J. Grefenstette
(Ed.), Proceedings of the Second International Conference on Genetic
Algorithms (pp. 9—13).: Hillsdale, NJ: Lawrence Erlbaum Associates.

Cronbach, L. (1951). Coe cient alpha and the internal structure of tests.
Psychometrika, 16, 279—334.

Darwin, C. (1859). The Origin of Species by Means of Natural Selection.
London: John Murray.

Davidor, Y. (1991). Epistasis variance: a viewpoint on GA-hardness. In G.
Rawlins (Ed.), Foundations of Genetic Algorithms (pp. 23—35).: San
Mateo, CA: Morgan Kaufmann.

de Jong, J. (1998). NIVOR toetsen 1998 handleiding. Arnhem: Cito. in
Dutch; Test Manual.

De Jong, K. (1975). Analysis of a Class of Genetic Adaptive Systems. PhD
thesis, University of Michigan.

De Jong, K. & Spears, W. (1989). Using genetic algorithms to solve NP-
complete problems. In J. Scha er (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms (pp. 124—132).: San
Mateo, CA: Morgan Kaufmann.

REFERENCES 107

Downing, S. & Haladyna, T. (2006). Handbook of Test Development. Mah-
wah, NJ: Lawrence Erlbaum Associates.

Ebel, R. (1967). The relation of item discrimination to test reliability.
Journal of Educational Measurement, 4, 125—128.

Eggen, T. (2004). Contributions to the Theory and Practice of Computer-
ized Adaptive Testing. PhD thesis, University of Twente.

Eiben, A., Aarts, E., & van Hee, K. (1991). Global convergence of genetic
algorithms: a Markov chain analysis. In H.-P. Schwefel & R. Männer
(Eds.), Parallel Problem Solving from Nature I (pp. 4—12).: Berlin:
Springer.

Eiben, A. & Smith, J. (2003). Introduction to Evolutionary Computing.
Berlin: Springer.

Embretson, S. (2004). The second century of ability testing: some predic-
tions and speculations. Measurement, 2, 1—32.

Feuerman, F. & Weiss, H. (1973). A mathematical programming model for
test construction and scoring. Management Science, 19, 961—966.

Fogarty, T. (1989). Varying the probability of mutation in the genetic
algorithm. In J. Scha er (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms (pp. 104—109).: San Mateo, CA:
Morgan Kaufmann.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Reading, MA: Addison-Wesley.

Goldberg, D. & Segrest, P. (1987). Finite Markov chain analysis of genetic
algorithms. In J. Grefenstette (Ed.), Proceedings of the Second Inter-
national Conference on Genetic Algorithms (pp. 1—8).: Hillsdale, NJ:
Lawrence Erlbaum Associates.

Guilford, J. (1953). The correlation of an item with a composite of the
remaining items in a test. Journal of Psychological Measurement, 13,
87—93.

Guilford, J. (1954). Psychometric Methods. New York: McGraw-Hill, 2nd
edition.

Gulliksen, H. (1950). Theory of Mental Tests. New York: Wiley.

Hambleton, R. & Swaminathan, H. (1985). Item Response Theory: Princi-
ples and Applications. Boston: Kluwer-Nijho .

Henrysson, S. (1962). The relation between factor loadings and biserial
correlations in item analysis. Psychometrika, 27, 419—424.

108 REFERENCES

Henrysson, S. (1963). Correction of item-total correlations in item analysis.
Psychometrika, 28, 211—218.

Holland, J. (1968). Hierarchical description of universal spaces and adap-
tive systems. Technical Report ORA projects 01252 and 08226, Ann
Arbor: University of Michigan.

Holland, J. (1973). Genetic algorithms and the optimal allocations of trials.
SIAM Journal of Computing, 2, 88—105.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann
Arbor: University of Michigan Press.

Hornsby, G. & Pollack, J. (2001). The advantages of generative grammati-
cal encodings for physical design. In Proceedings of the 2001 Congress
on Evolutionary Computing (pp. 600—607).: IEEE Press.

ILOG, Inc. (2002). CPLEX 8.1. Mountain View, CA: ILOG. Software and
User’s Manual.

Land, A. & Doig, A. (1960). An automatic method of solving discrete
programming problems. Econometrica, 28, 185—199.

Lawley, D. (1943). On problems connected with item selection and test
construction. Proceedings of the Royal Society of Edinburgh, 61-A,
273—287.

Lazarsfeld, P. (1950). The logical and mathematical foundation of latent
structure analysis. In S. Stou er (Ed.), Measurement and prediction:
Princeton, NJ: Princeton University Press.

Le Riche, R., Knopf-Lenoir, C., & Haftka, R. (1995). A segregated genetic
algorithm for constrained structural optimization. In L. Eschelbaum
(Ed.), Proceedings of the Sixth International Conference on Genetic
Algorithms (pp. 558—565).: San Mateo, CA: Morgan Kaufmann.

Lord, F. (1952). The relation of the reliability of multiple-choice tests to
the distribution of item di culties. Psychometrika, 17, 181—192.

Lord, F. (1980). Applications of Item Response Theory to Practical Testing
Problems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Masters, G. (1982). A Rasch model for partial credit scoring. Psychome-
trika, 47, 149—174.

Murtagh, B. (1988). MINTO. Sydney, NSW: Macquarie University. Soft-
ware and User’s Manual.

Novick, M. (1966). The axioms and principal results of classical test theory.
Journal of Mathematical Psychology, 3, 1—18.

REFERENCES 109

Orvosh, D. & Davis, L. (1993). Shall we repair? genetic algorithms, combi-
natorial optimization and feasibility constraints. In S. Forrest (Ed.),
Proceedings of the Fifth International Conference on Genetic Algo-
rithms (pp. 650).: San Mateo, CA: Morgan Kaufmann.

Rasch, G. (1960). Probabilistic Models for some Intelligence and Attain-
ment Tests. Copenhagen: Nielsen and Lydiche.

Richardson, J., Palmer, M., Liepins, G., & Hilliard, M. (1989). Some guide-
lines for genetic algorithms with penalty functions. In J. Scha er
(Ed.), Proceedings of the Third International Conference on Genetic
Algorithms (pp. 191—197).: San Mateo, CA: Morgan Kaufmann.

Rothlauf, F. & Goldberg, D. (2003). Redundant representations in evolu-
tionary computation. Evolutionary Computation, 11, 381—415.

Russian Federation Ministry of Education and Science (2005). Analyti-
cal Report on National Examinations in the System of Educational
Quality Assessment. Moscow: Author.

Samejima, F. (1977). Weakly parallel tests in latent trait theory with some
criticisms of classical test theory. Psychometrika, 42, 193—198.

Sanders, P. & Verschoor, A. (1998). Parallel test construction using classical
item parameters. Applied Psychological Measurement, 22, 212—223.

Siedlecki, W. & Sklanski, J. (1989). Constrained genetic optimization via
dynamic reward-penalty balancing and its use in pattern recognition.
In J. Scha er (Ed.), Proceedings of the Third International Confer-
ence on Genetic Algorithms (pp. 141—150).: San Mateo, CA: Morgan
Kaufmann.

Smith, G. (1979). Adaptive Genetic Algorithms and the Boolean Satisfia-
bility Problem. unpublished manuscript.

Spearman, C. (1904). The proof and measurement of association between
two things. American Journal of Psychology, 15, 72—101.

Spears, W. & De Jong, K. (1999). Dining with GAs: operator lunch the-
orems. In W. Banzhaf & C. Reeves (Eds.), Foundations of Genetic
Algorithms 5 (pp. 85—101).: San Francisco, CA: Morgan Kaufmann.

Suzuki, J. (1993). A Markov chain analysis on a genetic algorithm. In S.
Forrest (Ed.), Proceedings of the Fifth International Conference on
Genetic Algorithms (pp. 146—153).: San Mateo, CA: Morgan Kauf-
mann.

Swanson, L. & Stocking, M. (1993). A model and heuristic for solving very
large item selection problems. Applied Psychological Measurement,
17, 151—166.

110 REFERENCES

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J. Scha er
(Ed.), Proceedings of the Third International Conference on Genetic
Algorithms (pp. 2—9).: San Mateo, CA: Morgan Kaufmann.

Theunissen, T. (1985). Binary programming and test design. Psychome-
trika, 50, 411—420.

Theunissen, T. (1996). Combinatorial Issues in Test Construction. PhD
thesis, University of Amsterdam.

Thierens, D. & Goldberg, D. (1994). Convergence models of genetic al-
gorithm selection schemes. In Y. Davidor (Ed.), Parallel Problem
Solving from Nature - PPSN III (pp. 119—129).: Berlin: Springer.

Thurstone, L. (1925). A method of scaling psychological and educational
tests. Journal of Educational Psychology, 16, 433—451.

Timminga, E., van der Linden, W., & Schweizer, D. (1996). ConTEST 2.0:
A decision support system for item banking and optimal test assembly.
Groningen: iec ProGAMMA. Software and User’s Manual.

Toussaint, M. (2005). Compact genetic codes as a search strategy of evolu-
tionary processes. In A. Wright, M. Vose, K. De Jong, & L. Schmidt
(Eds.), Foundations of Genetic Algorithms 2005 (pp. 75—94).: Berlin:
Springer.

van der Linden, W. (2005). Linear Models for Optimal Test Design. New
York: Springer.

van der Linden, W. & Adema, J. (1998). Simultaneous assembly of multiple
test forms. Journal of Educational Measurement, 35, 185—198.

van der Linden, W. & Boekkooi-Timminga, E. (1989). A maximin model
for test design with practical constraints. Psychometrika, 54, 237—247.

Verhelst, N., Glas, C., & Verstralen, H. (1995). One-Parameter Logistic
Model (OPLM). Arnhem: Cito. Software and User’s Manual.

Verschoor, A. (1991). Optimal Test Design. Arnhem: Cito. Software and
User’s Manual.

Verschoor, A. (2004). IRT Test Assembly Using Genetic Algorithms. Mea-
surement and Research Department Reports 2004-4, Arnhem: Cito.

Verschoor, A. (2005). DOT 2005. Arnhem: Cito. Software for Automated
Test Assembly.

Way, W. & Ste en, M. (1998). Strategies for managing item pools to
maximize item security. Paper presented at the annual meeting of
the National Council on Measurement in Education, San Diego.

REFERENCES 111

Zubin, J. (1934). The method of internal consistency for selecting test
items. Journal of Educational Psychology, 25, 345—356.

